Author: A.V. Arkhangel'skii
Publisher: Springer Science & Business Media
ISBN: 9781402003080
Category : Mathematics
Languages : en
Pages : 440
Book Description
Fundamentals of General Topology
Author: A.V. Arkhangel'skii
Publisher: Springer Science & Business Media
ISBN: 9781402003080
Category : Mathematics
Languages : en
Pages : 440
Book Description
Publisher: Springer Science & Business Media
ISBN: 9781402003080
Category : Mathematics
Languages : en
Pages : 440
Book Description
Topology with Applications
Author: Somashekhar A. Naimpally
Publisher: World Scientific
ISBN: 9814407666
Category : Mathematics
Languages : en
Pages : 294
Book Description
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces.This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising.It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
Publisher: World Scientific
ISBN: 9814407666
Category : Mathematics
Languages : en
Pages : 294
Book Description
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces.This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising.It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
General Topology
Author: Tom Richmond
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110686724
Category : Mathematics
Languages : en
Pages : 370
Book Description
The first half of the book provides an introduction to general topology, with ample space given to exercises and carefully selected applications. The second half of the text includes topics in asymmetric topology, a field motivated by applications in computer science. Recurring themes include the interactions of topology with order theory and mathematics designed to model loss-of-resolution situations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110686724
Category : Mathematics
Languages : en
Pages : 370
Book Description
The first half of the book provides an introduction to general topology, with ample space given to exercises and carefully selected applications. The second half of the text includes topics in asymmetric topology, a field motivated by applications in computer science. Recurring themes include the interactions of topology with order theory and mathematics designed to model loss-of-resolution situations.
Recent Progress in General Topology II
Author: M. Husek
Publisher: Elsevier
ISBN: 0444509801
Category : Mathematics
Languages : en
Pages : 652
Book Description
The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.
Publisher: Elsevier
ISBN: 0444509801
Category : Mathematics
Languages : en
Pages : 652
Book Description
The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.
General Topology
Author: John L. Kelley
Publisher: Courier Dover Publications
ISBN: 0486820661
Category : Mathematics
Languages : en
Pages : 321
Book Description
Comprehensive text for beginning graduate-level students and professionals. "The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure." — Bulletin of the American Mathematical Society. 1955 edition.
Publisher: Courier Dover Publications
ISBN: 0486820661
Category : Mathematics
Languages : en
Pages : 321
Book Description
Comprehensive text for beginning graduate-level students and professionals. "The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure." — Bulletin of the American Mathematical Society. 1955 edition.
Open Problems in Topology
Author: J. van Mill
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 716
Book Description
From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 716
Book Description
From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.
Topology and Robotics
Author: Michael Farber
Publisher: American Mathematical Soc.
ISBN: 0821842463
Category : Mathematics
Languages : en
Pages : 202
Book Description
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
Publisher: American Mathematical Soc.
ISBN: 0821842463
Category : Mathematics
Languages : en
Pages : 202
Book Description
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
Applications of Algebraic Topology
Author: S. Lefschetz
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190
Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190
Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Many Valued Topology and its Applications
Author: Ulrich Höhle
Publisher: Springer Science & Business Media
ISBN: 146151617X
Category : Mathematics
Languages : en
Pages : 377
Book Description
The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.
Publisher: Springer Science & Business Media
ISBN: 146151617X
Category : Mathematics
Languages : en
Pages : 377
Book Description
The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.
Recent Progress in General Topology II
Author: M. Husek
Publisher: Elsevier
ISBN: 0080929958
Category : Mathematics
Languages : en
Pages : 651
Book Description
The book presents surveys describing recent developments in most of the primary subfields ofGeneral Topology and its applications to Algebra and Analysis during the last decade. It follows freelythe previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared inconnection with the Prague Topological Symposium, held in 2001. During the last 10 years the focusin General Topology changed and therefore the selection of topics differs slightly from thosechosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (includingInfinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as:R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.
Publisher: Elsevier
ISBN: 0080929958
Category : Mathematics
Languages : en
Pages : 651
Book Description
The book presents surveys describing recent developments in most of the primary subfields ofGeneral Topology and its applications to Algebra and Analysis during the last decade. It follows freelythe previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared inconnection with the Prague Topological Symposium, held in 2001. During the last 10 years the focusin General Topology changed and therefore the selection of topics differs slightly from thosechosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (includingInfinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as:R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.