Author: Jörg Bewersdorff
Publisher: American Mathematical Soc.
ISBN: 1470465000
Category : Education
Languages : en
Pages : 217
Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. In this book, Bewersdorff follows the historical development of the theory, emphasizing concrete examples along the way. As a result, many mathematical abstractions are now seen as the natural consequence of particular investigations. Few prerequisites are needed beyond general college mathematics, since the necessary ideas and properties of groups and fields are provided as needed. Results in Galois theory are formulated first in a concrete, elementary way, then in the modern form. Each chapter begins with a simple question that gives the reader an idea of the nature and difficulty of what lies ahead. The applications of the theory to geometric constructions, including the ancient problems of squaring the circle, duplicating the cube, and trisecting the angle, and the construction of regular n n-gons are also presented. This new edition contains an additional chapter as well as twenty facsimiles of milestones of classical algebra. It is suitable for undergraduates and graduate students, as well as teachers and mathematicians seeking a historical and stimulating perspective on the field.
Galois Theory for Beginners: A Historical Perspective, Second Edition
Author: Jörg Bewersdorff
Publisher: American Mathematical Soc.
ISBN: 1470465000
Category : Education
Languages : en
Pages : 217
Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. In this book, Bewersdorff follows the historical development of the theory, emphasizing concrete examples along the way. As a result, many mathematical abstractions are now seen as the natural consequence of particular investigations. Few prerequisites are needed beyond general college mathematics, since the necessary ideas and properties of groups and fields are provided as needed. Results in Galois theory are formulated first in a concrete, elementary way, then in the modern form. Each chapter begins with a simple question that gives the reader an idea of the nature and difficulty of what lies ahead. The applications of the theory to geometric constructions, including the ancient problems of squaring the circle, duplicating the cube, and trisecting the angle, and the construction of regular n n-gons are also presented. This new edition contains an additional chapter as well as twenty facsimiles of milestones of classical algebra. It is suitable for undergraduates and graduate students, as well as teachers and mathematicians seeking a historical and stimulating perspective on the field.
Publisher: American Mathematical Soc.
ISBN: 1470465000
Category : Education
Languages : en
Pages : 217
Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. In this book, Bewersdorff follows the historical development of the theory, emphasizing concrete examples along the way. As a result, many mathematical abstractions are now seen as the natural consequence of particular investigations. Few prerequisites are needed beyond general college mathematics, since the necessary ideas and properties of groups and fields are provided as needed. Results in Galois theory are formulated first in a concrete, elementary way, then in the modern form. Each chapter begins with a simple question that gives the reader an idea of the nature and difficulty of what lies ahead. The applications of the theory to geometric constructions, including the ancient problems of squaring the circle, duplicating the cube, and trisecting the angle, and the construction of regular n n-gons are also presented. This new edition contains an additional chapter as well as twenty facsimiles of milestones of classical algebra. It is suitable for undergraduates and graduate students, as well as teachers and mathematicians seeking a historical and stimulating perspective on the field.
Galois Theory for Beginners
Author: Jörg Bewersdorff
Publisher: American Mathematical Soc.
ISBN: 0821838172
Category : Mathematics
Languages : en
Pages : 202
Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.
Publisher: American Mathematical Soc.
ISBN: 0821838172
Category : Mathematics
Languages : en
Pages : 202
Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.
Galois Theory
Author: David A. Cox
Publisher: John Wiley & Sons
ISBN: 1118218426
Category : Mathematics
Languages : en
Pages : 602
Book Description
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstractalgebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics inmathematics, with historical roots that led to the development ofmany central concepts in modern algebra, including groups andfields. Covering classic applications of the theory, such assolvability by radicals, geometric constructions, and finitefields, Galois Theory, Second Edition delves into noveltopics like Abel’s theory of Abelian equations, casusirreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of severaltopics not covered in standard texts on Galois theory,including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of primeor prime-squared degree Abel's theorem about geometric constructions on thelemniscates Galois groups of quartic polynomials in allcharacteristics Throughout the book, intriguing Mathematical Notes andHistorical Notes sections clarify the discussed ideas andthe historical context; numerous exercises and examples use Mapleand Mathematica to showcase the computations related to Galoistheory; and extensive references have been added to provide readerswith additional resources for further study. Galois Theory, Second Edition is an excellent book forcourses on abstract algebra at the upper-undergraduate and graduatelevels. The book also serves as an interesting reference for anyonewith a general interest in Galois theory and its contributions tothe field of mathematics.
Publisher: John Wiley & Sons
ISBN: 1118218426
Category : Mathematics
Languages : en
Pages : 602
Book Description
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstractalgebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics inmathematics, with historical roots that led to the development ofmany central concepts in modern algebra, including groups andfields. Covering classic applications of the theory, such assolvability by radicals, geometric constructions, and finitefields, Galois Theory, Second Edition delves into noveltopics like Abel’s theory of Abelian equations, casusirreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of severaltopics not covered in standard texts on Galois theory,including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of primeor prime-squared degree Abel's theorem about geometric constructions on thelemniscates Galois groups of quartic polynomials in allcharacteristics Throughout the book, intriguing Mathematical Notes andHistorical Notes sections clarify the discussed ideas andthe historical context; numerous exercises and examples use Mapleand Mathematica to showcase the computations related to Galoistheory; and extensive references have been added to provide readerswith additional resources for further study. Galois Theory, Second Edition is an excellent book forcourses on abstract algebra at the upper-undergraduate and graduatelevels. The book also serves as an interesting reference for anyonewith a general interest in Galois theory and its contributions tothe field of mathematics.
Glimpses of Soliton Theory
Author: Alex Kasman
Publisher: American Mathematical Society
ISBN: 1470472627
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book challenges and intrigues from beginning to end. It would be a treat to use for a capstone course or senior seminar. —William J. Satzer, MAA Reviews on Glimpses of Soliton Theory (First Edition) Solitons are nonlinear waves which behave like interacting particles. When first proposed in the 19th century, leading mathematical physicists denied that such a thing could exist. Now they are regularly observed in nature, shedding light on phenomena like rogue waves and DNA transcription. Solitons of light are even used by engineers for data transmission and optical switches. Furthermore, unlike most nonlinear partial differential equations, soliton equations have the remarkable property of being exactly solvable. Explicit solutions to those equations provide a rare window into what is possible in the realm of nonlinearity. Glimpses of Soliton Theory reveals the hidden connections discovered over the last half-century that explain the existence of these mysterious mathematical objects. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra, the book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass $wp$-functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Hierarchy, and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make the subject accessible to undergraduates, numerous worked examples and thought-provoking exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of Mathematica® to facilitate computation and animate solutions. The second edition refines the exposition in every chapter, adds more homework exercises and projects, updates references, and includes new examples involving non-commutative integrable systems. Moreover, the chapter on KdV multisolitons has been greatly expanded with new theorems providing a thorough analysis of their behavior and decomposition.
Publisher: American Mathematical Society
ISBN: 1470472627
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book challenges and intrigues from beginning to end. It would be a treat to use for a capstone course or senior seminar. —William J. Satzer, MAA Reviews on Glimpses of Soliton Theory (First Edition) Solitons are nonlinear waves which behave like interacting particles. When first proposed in the 19th century, leading mathematical physicists denied that such a thing could exist. Now they are regularly observed in nature, shedding light on phenomena like rogue waves and DNA transcription. Solitons of light are even used by engineers for data transmission and optical switches. Furthermore, unlike most nonlinear partial differential equations, soliton equations have the remarkable property of being exactly solvable. Explicit solutions to those equations provide a rare window into what is possible in the realm of nonlinearity. Glimpses of Soliton Theory reveals the hidden connections discovered over the last half-century that explain the existence of these mysterious mathematical objects. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra, the book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass $wp$-functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Hierarchy, and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make the subject accessible to undergraduates, numerous worked examples and thought-provoking exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of Mathematica® to facilitate computation and animate solutions. The second edition refines the exposition in every chapter, adds more homework exercises and projects, updates references, and includes new examples involving non-commutative integrable systems. Moreover, the chapter on KdV multisolitons has been greatly expanded with new theorems providing a thorough analysis of their behavior and decomposition.
Matrix Models for Population, Disease, and Evolutionary Dynamics
Author: J. M. Cushing
Publisher: American Mathematical Society
ISBN: 1470473348
Category : Mathematics
Languages : en
Pages : 293
Book Description
This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.
Publisher: American Mathematical Society
ISBN: 1470473348
Category : Mathematics
Languages : en
Pages : 293
Book Description
This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.
The Mathematics of Cellular Automata
Author: Jane Hawkins
Publisher: American Mathematical Society
ISBN: 1470475375
Category : Mathematics
Languages : en
Pages : 247
Book Description
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. After recapping the essentials from advanced calculus, the chapters that follow introduce symbolic spaces, equicontinuity, and attractors. More advanced topics include the Garden of Eden theorem and Conway's Game of Life, and a chapter on stochastic CA showcases a model of virus spread. Exercises and labs end each chapter, covering a range of applications, both mathematical and physical. Designed for undergraduates studying mathematics and related areas, the text provides ample opportunities for end-of-semester projects or further study. Computer use for the labs is largely optional, providing flexibility for different preferences and resources. Knowledge of advanced calculus and linear algebra is essential, while a course in real analysis would be ideal.
Publisher: American Mathematical Society
ISBN: 1470475375
Category : Mathematics
Languages : en
Pages : 247
Book Description
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. After recapping the essentials from advanced calculus, the chapters that follow introduce symbolic spaces, equicontinuity, and attractors. More advanced topics include the Garden of Eden theorem and Conway's Game of Life, and a chapter on stochastic CA showcases a model of virus spread. Exercises and labs end each chapter, covering a range of applications, both mathematical and physical. Designed for undergraduates studying mathematics and related areas, the text provides ample opportunities for end-of-semester projects or further study. Computer use for the labs is largely optional, providing flexibility for different preferences and resources. Knowledge of advanced calculus and linear algebra is essential, while a course in real analysis would be ideal.
An Invitation to Pursuit-Evasion Games and Graph Theory
Author: Anthony Bonato
Publisher: American Mathematical Society
ISBN: 1470467631
Category : Mathematics
Languages : en
Pages : 254
Book Description
Graphs measure interactions between objects such as friendship links on Twitter, transactions between Bitcoin users, and the flow of energy in a food chain. While graphs statically represent interacting systems, they may also be used to model dynamic interactions. For example, imagine an invisible evader loose on a graph, leaving only behind breadcrumb clues to their whereabouts. You set out with pursuers of your own, seeking out the evader's location. Would you be able to detect their location? If so, then how many resources are needed for detection, and how fast can that happen? These basic-seeming questions point towards the broad conceptual framework of pursuit-evasion games played on graphs. Central to pursuit-evasion games on graphs is the idea of optimizing certain parameters, whether they are the cop number, burning number, or localization number, for example. This book would be excellent for a second course in graph theory at the undergraduate or graduate level. It surveys different areas in graph searching and highlights many fascinating topics intersecting classical graph theory, geometry, and combinatorial designs. Each chapter ends with approximately twenty exercises and five larger scale projects.
Publisher: American Mathematical Society
ISBN: 1470467631
Category : Mathematics
Languages : en
Pages : 254
Book Description
Graphs measure interactions between objects such as friendship links on Twitter, transactions between Bitcoin users, and the flow of energy in a food chain. While graphs statically represent interacting systems, they may also be used to model dynamic interactions. For example, imagine an invisible evader loose on a graph, leaving only behind breadcrumb clues to their whereabouts. You set out with pursuers of your own, seeking out the evader's location. Would you be able to detect their location? If so, then how many resources are needed for detection, and how fast can that happen? These basic-seeming questions point towards the broad conceptual framework of pursuit-evasion games played on graphs. Central to pursuit-evasion games on graphs is the idea of optimizing certain parameters, whether they are the cop number, burning number, or localization number, for example. This book would be excellent for a second course in graph theory at the undergraduate or graduate level. It surveys different areas in graph searching and highlights many fascinating topics intersecting classical graph theory, geometry, and combinatorial designs. Each chapter ends with approximately twenty exercises and five larger scale projects.
Knots, Links and Their Invariants
Author: A. B. Sossinsky
Publisher: American Mathematical Society
ISBN: 1470471515
Category : Mathematics
Languages : en
Pages : 149
Book Description
This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links. Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.
Publisher: American Mathematical Society
ISBN: 1470471515
Category : Mathematics
Languages : en
Pages : 149
Book Description
This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links. Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.
An Introduction to the Circle Method
Author: M. Ram Murty
Publisher: American Mathematical Society
ISBN: 1470472031
Category : Mathematics
Languages : en
Pages : 280
Book Description
The circle method, pioneered by Ramanujan and Hardy in the early 20th century, has over the past 100 years become part of the standard tool chest of analytic number theory. Its scope of applications is ever-expanding, and the subject continues to see important breakthroughs. This book provides an introduction to the circle method that is accessible to undergraduate students with no background in number theory. The authors' goal is to show the students the elegance of the circle method and at the same time give a complete solution of the famous Waring problem as an illustration of the method. The first half of this book is a curated introduction to elementary number theory with an emphasis on topics needed for the second half. The second half showcases the two most “classic” applications of the circle method, to Waring's problem (following Hardy–Littlewood–Hua) and to Goldbach's conjectures (following Vinogradov, with improvements by Vaughan). This text is suitable for a one-semester undergraduate course or for independent study and will be a great entry point into this fascinating area of research.
Publisher: American Mathematical Society
ISBN: 1470472031
Category : Mathematics
Languages : en
Pages : 280
Book Description
The circle method, pioneered by Ramanujan and Hardy in the early 20th century, has over the past 100 years become part of the standard tool chest of analytic number theory. Its scope of applications is ever-expanding, and the subject continues to see important breakthroughs. This book provides an introduction to the circle method that is accessible to undergraduate students with no background in number theory. The authors' goal is to show the students the elegance of the circle method and at the same time give a complete solution of the famous Waring problem as an illustration of the method. The first half of this book is a curated introduction to elementary number theory with an emphasis on topics needed for the second half. The second half showcases the two most “classic” applications of the circle method, to Waring's problem (following Hardy–Littlewood–Hua) and to Goldbach's conjectures (following Vinogradov, with improvements by Vaughan). This text is suitable for a one-semester undergraduate course or for independent study and will be a great entry point into this fascinating area of research.
Finite Fields, with Applications to Combinatorics
Author: Kannan Soundararajan
Publisher: American Mathematical Society
ISBN: 1470469308
Category : Mathematics
Languages : en
Pages : 100
Book Description
This book uses finite field theory as a hook to introduce the reader to a range of ideas from algebra and number theory. It constructs all finite fields from scratch and shows that they are unique up to isomorphism. As a payoff, several combinatorial applications of finite fields are given: Sidon sets and perfect difference sets, de Bruijn sequences and a magic trick of Persi Diaconis, and the polynomial time algorithm for primality testing due to Agrawal, Kayal and Saxena. The book forms the basis for a one term intensive course with students meeting weekly for multiple lectures and a discussion session. Readers can expect to develop familiarity with ideas in algebra (groups, rings and fields), and elementary number theory, which would help with later classes where these are developed in greater detail. And they will enjoy seeing the AKS primality test application tying together the many disparate topics from the book. The pre-requisites for reading this book are minimal: familiarity with proof writing, some linear algebra, and one variable calculus is assumed. This book is aimed at incoming undergraduate students with a strong interest in mathematics or computer science.
Publisher: American Mathematical Society
ISBN: 1470469308
Category : Mathematics
Languages : en
Pages : 100
Book Description
This book uses finite field theory as a hook to introduce the reader to a range of ideas from algebra and number theory. It constructs all finite fields from scratch and shows that they are unique up to isomorphism. As a payoff, several combinatorial applications of finite fields are given: Sidon sets and perfect difference sets, de Bruijn sequences and a magic trick of Persi Diaconis, and the polynomial time algorithm for primality testing due to Agrawal, Kayal and Saxena. The book forms the basis for a one term intensive course with students meeting weekly for multiple lectures and a discussion session. Readers can expect to develop familiarity with ideas in algebra (groups, rings and fields), and elementary number theory, which would help with later classes where these are developed in greater detail. And they will enjoy seeing the AKS primality test application tying together the many disparate topics from the book. The pre-requisites for reading this book are minimal: familiarity with proof writing, some linear algebra, and one variable calculus is assumed. This book is aimed at incoming undergraduate students with a strong interest in mathematics or computer science.