Fusion Systems in Algebra and Topology

Fusion Systems in Algebra and Topology PDF Author: Michael Aschbacher
Publisher: Cambridge University Press
ISBN: 1107601002
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.

Fusion Systems in Algebra and Topology

Fusion Systems in Algebra and Topology PDF Author: Michael Aschbacher
Publisher: Cambridge University Press
ISBN: 1107601002
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.

Finite Group Theory

Finite Group Theory PDF Author: M. Aschbacher
Publisher: Cambridge University Press
ISBN: 9780521786751
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
During the last 40 years the theory of finite groups has developed dramatically. The finite simple groups have been classified and are becoming better understood. Tools exist to reduce many questions about arbitrary finite groups to similar questions about simple groups. Since the classification there have been numerous applications of this theory in other branches of mathematics. Finite Group Theory develops the foundations of the theory of finite groups. It can serve as a text for a course on finite groups for students already exposed to a first course in algebra. It could supply the background necessary to begin reading journal articles in the field. For specialists it also provides a reference on the foundations of the subject. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology PDF Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Fusion Systems in Algebra and Topology

Fusion Systems in Algebra and Topology PDF Author: Michael Aschbacher
Publisher:
ISBN: 9781139101844
Category : MATHEMATICS
Languages : en
Pages : 330

Get Book Here

Book Description
A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.

The Theory of Fusion Systems

The Theory of Fusion Systems PDF Author: David A. Craven
Publisher: Cambridge University Press
ISBN: 1107005965
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The first book to deal comprehensively with the theory of fusion systems.

Tensor Categories

Tensor Categories PDF Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

Topological Quantum Computation

Topological Quantum Computation PDF Author: Zhenghan Wang
Publisher: American Mathematical Soc.
ISBN: 0821849301
Category : Computers
Languages : en
Pages : 134

Get Book Here

Book Description
Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.

Sporadic Groups

Sporadic Groups PDF Author: Michael Aschbacher
Publisher: Cambridge University Press
ISBN: 9780521420495
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
Sporadic Groups is the first step in a programme to provide a uniform, self-contained treatment of the foundational material on the sporadic finite simple groups. The classification of the finite simple groups is one of the premier achievements of modern mathematics. The classification demonstrates that each finite simple group is either a finite analogue of a simple Lie group or one of 26 pathological sporadic groups. Sporadic Groups provides for the first time a self-contained treatment of the foundations of the theory of sporadic groups accessible to mathematicians with a basic background in finite groups such as in the author's text Finite Group Theory. Introductory material useful for studying the sporadics, such as a discussion of large extraspecial 2-subgroups and Tits' coset geometries, opens the book. A construction of the Mathieu groups as the automorphism groups of Steiner systems follows. The Golay and Todd modules, and the 2-local geometry for M24 are discussed. This is followed by the standard construction of Conway of the Leech lattice and the Conway group. The Monster is constructed as the automorphism group of the Griess algebra using some of the best features of the approaches of Griess, Conway, and Tits, plus a few new wrinkles. Researchers in finite group theory will find this text invaluable. The subjects treated will interest combinatorists, number theorists, and conformal field theorists.

Rank 2 Amalgams and Fusion Systems

Rank 2 Amalgams and Fusion Systems PDF Author: Martin van Beek
Publisher: Springer Nature
ISBN: 3031544617
Category :
Languages : en
Pages : 210

Get Book Here

Book Description


On Fusion Systems of Component Type

On Fusion Systems of Component Type PDF Author: Michael Aschbacher
Publisher: American Mathematical Soc.
ISBN: 1470435209
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
This memoir begins a program to classify a large subclass of the class of simple saturated 2-fusion systems of component type. Such a classification would be of great interest in its own right, but in addition it should lead to a significant simplification of the proof of the theorem classifying the finite simple groups. Why should such a simplification be possible? Part of the answer lies in the fact that there are advantages to be gained by working with fusion systems rather than groups. In particular one can hope to avoid a proof of the B-Conjecture, a important but difficult result in finite group theory, established only with great effort.