Further Advances in Twistor Theory

Further Advances in Twistor Theory PDF Author: L.J. Mason
Publisher: CRC Press
ISBN: 9780582004658
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and nonspecialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction.

Further Advances in Twistor Theory

Further Advances in Twistor Theory PDF Author: L.J. Mason
Publisher: CRC Press
ISBN: 9780582004658
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and nonspecialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction.

Further Advances in Twistor Theory, Volume III

Further Advances in Twistor Theory, Volume III PDF Author: L.J. Mason
Publisher: CRC Press
ISBN: 1482280949
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Although twistor theory originated as an approach to the unification of quantum theory and general relativity, twistor correspondences and their generalizations have provided powerful mathematical tools for studying problems in differential geometry, nonlinear equations, and representation theory. At the same time, the theory continues to offer pro

Further Advances in Twistor Theory

Further Advances in Twistor Theory PDF Author: L.J. Mason
Publisher: Chapman and Hall/CRC
ISBN: 9780582004658
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and nonspecialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction.

An Introduction to Twistor Theory

An Introduction to Twistor Theory PDF Author: S. A. Huggett
Publisher: Cambridge University Press
ISBN: 9780521456890
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Evolving from graduate lectures given in London and Oxford, this introduction to twistor theory and modern geometrical approaches to space-time structure will provide graduate students with the basics of twistor theory, presupposing some knowledge of special relativity and differenttial geometry.

Further Advances in Twistor Theory

Further Advances in Twistor Theory PDF Author: Lionel J. Mason
Publisher:
ISBN: 9780608035994
Category : Twistor theory
Languages : en
Pages : 399

Get Book Here

Book Description


Encyclopedia of Nonlinear Science

Encyclopedia of Nonlinear Science PDF Author: Alwyn Scott
Publisher: Routledge
ISBN: 1135455589
Category : Reference
Languages : en
Pages : 1107

Get Book Here

Book Description
In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.

Recent Advances in Differential Equations

Recent Advances in Differential Equations PDF Author: H-H Dai
Publisher: CRC Press
ISBN: 1000724549
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
The First Pan-China Conference on Differential Equations was held in Kunming, China in June of 1997. Researchers from around the world attended-including representatives from the US, Canada, and the Netherlands-but the majority of the speakers hailed from China and Hong Kong. This volume contains the plenary lectures and invited talks presented at that conference, and provides an excellent view of the research on differential equations being carried out in China. Most of the subjects addressed arose from actual applications and cover ordinary and partial differential equations. Topics include:

100 Years of Relativity

100 Years of Relativity PDF Author: Abhay Ashtekar
Publisher: World Scientific
ISBN: 9812563946
Category : Science
Languages : en
Pages : 527

Get Book Here

Book Description
Divided into three parts, this volume focuses on a summary of how relativity theories were born. It also discusses the ramifications of general relativity, such as black holes, space-time singularities, gravitational waves, the large scale structure of the cosmos, and more. It includes summaries of radical changes in the notions of space and time.

Complex Analysis with MATHEMATICA®

Complex Analysis with MATHEMATICA® PDF Author: William T. Shaw
Publisher: Cambridge University Press
ISBN: 0521836263
Category : Computers
Languages : en
Pages : 6

Get Book Here

Book Description
This book presents a way of learning complex analysis, using Mathematica. Includes CD with electronic version of the book.

Progress in Holomorphic Dynamics

Progress in Holomorphic Dynamics PDF Author: Hartje Kriete
Publisher: CRC Press
ISBN: 9780582323889
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
In the last few decades, complex dynamical systems have received widespread public attention and emerged as one of the most active fields of mathematical research. Starting where other monographs in the subject end, Progress in Holomorphic Dynamics advances the theoretical aspects and recent results in complex dynamical systems, with particular emphasis on Siegel discs. Organized into four parts, the papers in this volume grew out of three workshops: two hosted by the Georg-August-Universität Göttingen and one at the "Mathematisches Forschungsinstitut Oberwolfach." Part I addresses linearization. The authors review Yoccoz's proof that the Brjuno condition is the optimal condition for linearizability of indifferent fixed points and offer a treatment of Perez-Marco's refinement of Yoccoz's work. Part II discusses the conditions necessary for the boundary of a Siegel disc to contain a critical point, builds upon Herman's work, and offers a survey of the state-of-the-art regarding the boundaries of Siegel discs. Part III deals with the topology of Julia sets with Siegel discs and contains a remarkable highlight: C.L. Petersen establishes the existence of Siegel discs of quadratic polynomials with a locally connected boundary. Keller, taking a different approach, explains the relations between locally connected "real Julia sets" with Siegel discs and the abstract concepts of kneading sequences and itineraries. Part IV closes the volume with four papers that review the different directions of present research in iteration theory. It includes discussions on the relations between commuting rational functions and their Julia sets, interactions between the iteration of polynomials and the iteration theory of entire transcendental functions, a deep analysis of the topology of the limbs of the Mandelbrot set, and an overview of complex dynamics in higher dimensions.