Fundamentals of Matrix Computations

Fundamentals of Matrix Computations PDF Author: David S. Watkins
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 476

Get Book

Book Description
The use of numerical methods continues to expand rapidly. At their heart lie matrix computations. Written in a clear, expository style, it allows students and professionals to build confidence in themselves by putting the theory behind matrix computations into practice instantly. Algorithms that allow students to work examples and write programs introduce each chapter. The book then moves on to discuss more complicated theoretical material. Using a step-by-step approach, it introduces mathematical material only as it is needed. Exercises range from routine computations and verifications to extensive programming projects and challenging proofs.

Fundamentals of Matrix Computations

Fundamentals of Matrix Computations PDF Author: David S. Watkins
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 476

Get Book

Book Description
The use of numerical methods continues to expand rapidly. At their heart lie matrix computations. Written in a clear, expository style, it allows students and professionals to build confidence in themselves by putting the theory behind matrix computations into practice instantly. Algorithms that allow students to work examples and write programs introduce each chapter. The book then moves on to discuss more complicated theoretical material. Using a step-by-step approach, it introduces mathematical material only as it is needed. Exercises range from routine computations and verifications to extensive programming projects and challenging proofs.

Matrix Computations

Matrix Computations PDF Author: Gene Howard Golub
Publisher:
ISBN: 9780801837395
Category : Matrices
Languages : en
Pages : 694

Get Book

Book Description
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.

Fundamentals of Matrix Computations

Fundamentals of Matrix Computations PDF Author: David S. Watkins
Publisher: John Wiley & Sons
ISBN: 0471461679
Category : Mathematics
Languages : en
Pages : 635

Get Book

Book Description
A significantly revised and improved introduction to a critical aspect of scientific computation Matrix computations lie at the heart of most scientific computational tasks. For any scientist or engineer doing large-scale simulations, an understanding of the topic is essential. Fundamentals of Matrix Computations, Second Edition explains matrix computations and the accompanying theory clearly and in detail, along with useful insights. This Second Edition of a popular text has now been revised and improved to appeal to the needs of practicing scientists and graduate and advanced undergraduate students. New to this edition is the use of MATLAB for many of the exercises and examples, although the Fortran exercises in the First Edition have been kept for those who want to use them. This new edition includes: * Numerous examples and exercises on applications including electrical circuits, elasticity (mass-spring systems), and simple partial differential equations * Early introduction of the singular value decomposition * A new chapter on iterative methods, including the powerful preconditioned conjugate-gradient method for solving symmetric, positive definite systems * An introduction to new methods for solving large, sparse eigenvalue problems including the popular implicitly-restarted Arnoldi and Jacobi-Davidson methods With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.

Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition PDF Author: Lars Elden
Publisher: SIAM
ISBN: 0898716268
Category : Computers
Languages : en
Pages : 226

Get Book

Book Description
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Handbook for Matrix Computations

Handbook for Matrix Computations PDF Author: Thomas F. Coleman
Publisher: SIAM
ISBN: 9781611971040
Category : Mathematics
Languages : en
Pages : 271

Get Book

Book Description
Provides the user with a step-by-step introduction to Fortran 77, BLAS, LINPACK, and MATLAB. It is a reference that spans several levels of practical matrix computations with a strong emphasis on examples and "hands on" experience.

Structured Matrices and Polynomials

Structured Matrices and Polynomials PDF Author: Victor Y. Pan
Publisher: Springer Science & Business Media
ISBN: 1461201292
Category : Mathematics
Languages : en
Pages : 299

Get Book

Book Description
This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.

Direct Methods for Sparse Linear Systems

Direct Methods for Sparse Linear Systems PDF Author: Timothy A. Davis
Publisher: SIAM
ISBN: 0898716136
Category : Computers
Languages : en
Pages : 228

Get Book

Book Description
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.

Matrix Analysis and Computations

Matrix Analysis and Computations PDF Author: Zhong-Zhi Bai
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496

Get Book

Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics

Applied Numerical Linear Algebra

Applied Numerical Linear Algebra PDF Author: James W. Demmel
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426

Get Book

Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Polynomial and Matrix Computations

Polynomial and Matrix Computations PDF Author: Dario Bini
Publisher: Springer Science & Business Media
ISBN: 1461202655
Category : Computers
Languages : en
Pages : 433

Get Book

Book Description
Our Subjects and Objectives. This book is about algebraic and symbolic computation and numerical computing (with matrices and polynomials). It greatly extends the study of these topics presented in the celebrated books of the seventies, [AHU] and [BM] (these topics have been under-represented in [CLR], which is a highly successful extension and updating of [AHU] otherwise). Compared to [AHU] and [BM] our volume adds extensive material on parallel com putations with general matrices and polynomials, on the bit-complexity of arithmetic computations (including some recent techniques of data compres sion and the study of numerical approximation properties of polynomial and matrix algorithms), and on computations with Toeplitz matrices and other dense structured matrices. The latter subject should attract people working in numerous areas of application (in particular, coding, signal processing, control, algebraic computing and partial differential equations). The au thors' teaching experience at the Graduate Center of the City University of New York and at the University of Pisa suggests that the book may serve as a text for advanced graduate students in mathematics and computer science who have some knowledge of algorithm design and wish to enter the exciting area of algebraic and numerical computing. The potential readership may also include algorithm and software designers and researchers specializing in the design and analysis of algorithms, computational complexity, alge braic and symbolic computing, and numerical computation.