Fundamental Study of Structural Features Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass

Fundamental Study of Structural Features Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass PDF Author: Li Zhu
Publisher:
ISBN:
Category : Biomass energy
Languages : en
Pages : 0

Get Book Here

Book Description

Fundamental Study of Structural Features Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass

Fundamental Study of Structural Features Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass PDF Author: Li Zhu
Publisher:
ISBN:
Category : Biomass energy
Languages : en
Pages : 0

Get Book Here

Book Description


Fundamental Factors Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass

Fundamental Factors Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass PDF Author: Zhiying Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description


Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery

Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery PDF Author: S.I. Mussatto
Publisher: Elsevier
ISBN: 0128025611
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
Biomass Fractionation Technologies for a Lignocellulosic Feedstock-based Biorefinery reviews the extensive research and tremendous scientific and technological developments that have occurred in the area of biorefinering, including industrial processes and product development using ‘green technologies’, often referred as white biotechnology. As there is a huge need for new design concepts for modern biorefineries as an alternative and amendment to industrial crude oil and gas refineries, this book presents the most important topics related to biomass fractionation, including advances, challenges, and perspectives, all with references to current literature for further study. Presented in 26 chapters by international field specialists, each chapter consists of review text that comprises the most recent advances, challenges, and perspectives for each fractionation technique. The book is an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation. Provides information on the most advanced and innovative pretreatment processes and technologies for biomass Reviews numerous valuable products from lignocellulose Discusses integration of processes for complete biomass conversion with minimum waste generation Identifies the research gaps in scale-up Presents an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation

Characterization and Saccharification of Ionic Liquid Pretreated Lignocellulosic Biomass

Characterization and Saccharification of Ionic Liquid Pretreated Lignocellulosic Biomass PDF Author: Indira Priya Samayam
Publisher:
ISBN:
Category : Biomass conversion
Languages : en
Pages : 208

Get Book Here

Book Description
The goal of this dissertation research is to gain a more fundamental understanding of the impact of ionic liquid (IL) pretreatment of lignocellulosic biomass in production of ethanol and other chemicals through a sugar platform and biochemical conversion of polysaccharides to monomeric sugars. Recalcitrance of cellulose hydrolysis is a primary roadblock for efficient enzymatic conversion of lignocellulosic biomass to monomeric sugars that are fermented to ethanol or other products. The structure of lignocellulosic biomass is rendered amenable to enzymatic saccharification upon IL pretreatment. Changes in the structure of cellulose in relation to the biomass digestibility with varying ionic liquid (IL) pretreatment were examined. Conversion of native cellulose I to amorphous cellulose or cellulose II improved the susceptibility of cellulose to enzymatic hydrolysis. The performance of commercial enzyme mixtures were evaluated through saccharification of IL pretreated biomass substrates (poplar and switchgrass) at low biomass slurry concentrations. Poplar and switchgrass hydrolysis with commercial cellulase, Spezyme CP, and Multifect Xylanase showed synergism between the two enzymes. However, switchgrass hydrolysis was less complete than that of poplar, likely due to differences in hemicellulose structural features. Hydrolysis of polysaccharides in lignocellulose at high biomass slurry concentrations is essential in economical fermentation of hydrolyzates to ethanol and other products. Commercial enzyme mixtures were varied for simultaneous or sequential hydrolysis and fermentation of pentose and hexose sugars with Pichia stipitis for IL treated poplar. In sequential hydrolysis of poplar at modest enzyme loadings of 9 mg/g xylan Multifect Xylanase, 1.8 mg/ g xylan SXA (ß-xylosidase) at 50°C in the first step and 10 FPU/g glucan Spezyme CP, and 40 CBU/g glucan Novozyme 188 at 25°C in the second step, the yields of glucose and xylose at 15% (w/v) solid loadings were 61% and 83%, respectively. The incomplete hydrolysis may be due to the accumulation of cellobiose and low activity of enzymes at 25°C. Further increase in Novozyme 188 loadings or hydrolysis may improve hydrolysis yields. A maximum of 66% theoretical ethanol yield based on initial sugar analysis of poplar was expected from these hydrolyzates if all the released sugars were fermented to ethanol. In sequential hydrolysis and fermentation with P. stipitis, 56% theoretical ethanol yields based on the initial sugar composition of poplar respectively was achieved.

Biomass Recalcitrance

Biomass Recalcitrance PDF Author: Michael Himmel
Publisher: Wiley-Blackwell
ISBN:
Category : Science
Languages : en
Pages : 552

Get Book Here

Book Description
This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.

Advances in Bioprocess Technology

Advances in Bioprocess Technology PDF Author: Pogaku Ravindra
Publisher: Springer
ISBN: 3319179152
Category : Technology & Engineering
Languages : en
Pages : 529

Get Book Here

Book Description
This book provides an extensive overview of the latest research in environmentally benign integrated bioprocess technology. The cutting edge bioprocess technologies highlighted in the book include bioenergy from lignocellulose materials, biomass gasification, ethanol, butanol, biodiesel from agro waste, enzymatic bioprocess technology, food fermentation with starter cultures, and intellectual property rights for bioprocesses. This book further addresses niche technologies in bioprocesses that broadens readers’ understanding of downstream processing for bio products and membrane technology for bioprocesses. The latest developments in biomass and bioenergy technology are reviewed exhaustively, including IPR rights, nanotechnology for bioenergy products, biomass gasification, and biomass combustion. This is an ideal book for scientists, engineers, students, as well as members of industry and policy-makers. This book also: Addresses cutting-edge technologies in bioprocesses Broadens readers’ understanding of metabolic engineering, downstream processing for bioproducts, and membrane technology for bioprocesses Reviews exhaustively the latest developments in biomass and bioenergy technology, including nanotechnology for bioenergy products, biomass gasification, biomass combustion, and more

Pretreatment Techniques for Biofuels and Biorefineries

Pretreatment Techniques for Biofuels and Biorefineries PDF Author: Zhen Fang
Publisher: Springer Science & Business Media
ISBN: 3642327354
Category : Technology & Engineering
Languages : en
Pages : 461

Get Book Here

Book Description
This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries. Zhen Fang is a Professor of Bioenergy and the leader and founder of the biomass group at the Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences. He is also an adjunct full Professor of Life Sciences at the University of Science and Technology of China.

Lignocellulose

Lignocellulose PDF Author: Kelly L. Pittman
Publisher:
ISBN: 9781634829168
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 155

Get Book Here

Book Description
This book is focused on new developments in lignocellulose research. In particular, lignocellulosic biomass has been the focus of considerable attention for the production of a wide range of valuable products in biorefineries which aim to utilize renewable starting material instead of fossil based products. The authors focus on the usage of hemicellulose to produce various bio-based products including platform chemicals that have considerable market potential in the coming years. Other chapters in the book review studies which have explored how the lignocellulose morphological structure affects the enzymatic hydrolysis reaction and the corresponding plant cell wall structural changes. Other chapters describe the state-of-the-art of pretreatment processes, fermentation processes, microbial lipid accumulation pathway and methanolysis of the microbial lipids to increase the yields of biodiesel as well as the challenges associated with the use of lignocellulosic biomass (LCB); the ways in which membrane technology has been gaining widespread recognition to substitute the existing separation and purification technologies, specifically, the applications of ionic liquid based membranes; and the quantitative composition of secretome of potent biomass hydrolyzing fungi along with their post translational modifications and also the role of PTMs.

Lignocellulosic Biomass to Liquid Biofuels

Lignocellulosic Biomass to Liquid Biofuels PDF Author: Abu Yousuf
Publisher: Academic Press
ISBN: 0128162805
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book's comprehensive overview. - Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass - Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion - Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes

Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Thermochemical and Catalytic Conversion Technologies for Future Biorefineries PDF Author: Pradeep Verma
Publisher: Springer Nature
ISBN: 9811943125
Category : Sports & Recreation
Languages : en
Pages : 384

Get Book Here

Book Description
This book will attempt to provide an account of knowledge on biomass available for biomass-based biorefineries. Its focuses on understanding the recalcitrance of biomass and how it limits the overall conversion efficiency. It also gives an insight what are different conventional approaches available for pretreatment and hydrolysis of the biomass. The chapters deals with highlights how enzymes can be a powerhouse and play pioneering roles in biomass valorization. The book will also throw light on how technical aspects of thermochemical conversion strategies such as pyrolysis, gasification, organosolv methods for the generation of value-added materials such as high-quality bio-oil, biochars, and biobased chemicals. These high-value compounds can be put to widespread application in biofuel, biocatalyst, waste bioremediation (heavy metal removal), air purification and effluent treatment applications. The book will provide literature on the limitations of already existing technologies and provide prospects of each technology. This book is of interest to teachers, researchers, bioenergy scientists, capacity builders, and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of energy studies, chemical engineering, biotechnology, and environmental sciences. National and international energy scientists and policymakers will also find this to be a useful read.