Author: S. Johansen
Publisher: Springer Science & Business Media
ISBN: 146125244X
Category : Mathematics
Languages : en
Pages : 135
Book Description
These notes on regression give an introduction to some of the techniques that I have found useful when working with various data sets in collaboration with Dr. S. Keiding (Copenhagen) and Dr. J.W.L. Robinson (Lausanne). The notes are based on some lectures given at the Institute of Mathematical Statistics, University of Copenhigen, 1978-81, for graduate students, and assumes a familiarity with statistical theory corresponding to the book by C.R. Rao: "Linear Statistical Inference and its Applications". Wiley, New York (1973) . The mathematical tools needed for the algebraic treatment of the models are some knowledge of finite dimensional vector spaces with an inner product and the notion of orthogonal projection. For the analytic treatment I need characteristic functions and weak convergence as the main tools. The most important statistical concepts are the general linear model for Gaussian variables and the general methods of maximum likelihood estimation as well as the likelihood ratio test. All these topics are presented in the above mentioned book by Rao and the reader is referred to that for details. For convenience a short appendix is added where the fundamental concepts from linear algebra are discussed.
Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data
Author: S. Johansen
Publisher: Springer Science & Business Media
ISBN: 146125244X
Category : Mathematics
Languages : en
Pages : 135
Book Description
These notes on regression give an introduction to some of the techniques that I have found useful when working with various data sets in collaboration with Dr. S. Keiding (Copenhagen) and Dr. J.W.L. Robinson (Lausanne). The notes are based on some lectures given at the Institute of Mathematical Statistics, University of Copenhigen, 1978-81, for graduate students, and assumes a familiarity with statistical theory corresponding to the book by C.R. Rao: "Linear Statistical Inference and its Applications". Wiley, New York (1973) . The mathematical tools needed for the algebraic treatment of the models are some knowledge of finite dimensional vector spaces with an inner product and the notion of orthogonal projection. For the analytic treatment I need characteristic functions and weak convergence as the main tools. The most important statistical concepts are the general linear model for Gaussian variables and the general methods of maximum likelihood estimation as well as the likelihood ratio test. All these topics are presented in the above mentioned book by Rao and the reader is referred to that for details. For convenience a short appendix is added where the fundamental concepts from linear algebra are discussed.
Publisher: Springer Science & Business Media
ISBN: 146125244X
Category : Mathematics
Languages : en
Pages : 135
Book Description
These notes on regression give an introduction to some of the techniques that I have found useful when working with various data sets in collaboration with Dr. S. Keiding (Copenhagen) and Dr. J.W.L. Robinson (Lausanne). The notes are based on some lectures given at the Institute of Mathematical Statistics, University of Copenhigen, 1978-81, for graduate students, and assumes a familiarity with statistical theory corresponding to the book by C.R. Rao: "Linear Statistical Inference and its Applications". Wiley, New York (1973) . The mathematical tools needed for the algebraic treatment of the models are some knowledge of finite dimensional vector spaces with an inner product and the notion of orthogonal projection. For the analytic treatment I need characteristic functions and weak convergence as the main tools. The most important statistical concepts are the general linear model for Gaussian variables and the general methods of maximum likelihood estimation as well as the likelihood ratio test. All these topics are presented in the above mentioned book by Rao and the reader is referred to that for details. For convenience a short appendix is added where the fundamental concepts from linear algebra are discussed.
Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data
Author: Søren Johansen
Publisher:
ISBN: 9783540909682
Category : Analyse de régression
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783540909682
Category : Analyse de régression
Languages : en
Pages : 0
Book Description
Palm Probabilities and Stationary Queues
Author: Francois Baccelli
Publisher: Springer Science & Business Media
ISBN: 1461575613
Category : Mathematics
Languages : en
Pages : 116
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461575613
Category : Mathematics
Languages : en
Pages : 116
Book Description
Optimal Unbiased Estimation of Variance Components
Author: James D. Malley
Publisher: Springer Science & Business Media
ISBN: 1461575540
Category : Mathematics
Languages : en
Pages : 157
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461575540
Category : Mathematics
Languages : en
Pages : 157
Book Description
Statistical Information and Likelihood
Author: D. Basu
Publisher: Springer Science & Business Media
ISBN: 1461238943
Category : Mathematics
Languages : en
Pages : 386
Book Description
It is an honor to be asked to write a foreword to this book, for I believe that it and other books to follow will eventually lead to a dramatic change in the current statistics curriculum in our universities. I spent the 1975-76 academic year at Florida State University in Tallahassee. My purpose was to complete a book on Statistical Reliability Theory with Frank Proschan. At the time, I was working on total time on test processes. At the same time, I started attending lectures by Dev Basu on statistical inference. It was Lehmann's hypothesis testing course and Lehmann's book was the text. However, I noticed something strange - Basu never opened the book. He was obviously not following it. Instead, he was giving a very elegant, measure theoretic treatment of the concepts of sufficiency, ancillarity, and invariance. He was interested in the concept of information - what it meant. - how it fitted in with contemporary statistics. As he looked at the fundamental ideas, the logic behind their use seemed to evaporate. I was shocked. I didn't like priors. I didn't like Bayesian statistics. But after the smoke had cleared, that was all that was left. Basu loves counterexamples. He is like an art critic in the field of statistical inference. He would find a counterexample to the Bayesian approach if he could. So far, he has failed in this respect.
Publisher: Springer Science & Business Media
ISBN: 1461238943
Category : Mathematics
Languages : en
Pages : 386
Book Description
It is an honor to be asked to write a foreword to this book, for I believe that it and other books to follow will eventually lead to a dramatic change in the current statistics curriculum in our universities. I spent the 1975-76 academic year at Florida State University in Tallahassee. My purpose was to complete a book on Statistical Reliability Theory with Frank Proschan. At the time, I was working on total time on test processes. At the same time, I started attending lectures by Dev Basu on statistical inference. It was Lehmann's hypothesis testing course and Lehmann's book was the text. However, I noticed something strange - Basu never opened the book. He was obviously not following it. Instead, he was giving a very elegant, measure theoretic treatment of the concepts of sufficiency, ancillarity, and invariance. He was interested in the concept of information - what it meant. - how it fitted in with contemporary statistics. As he looked at the fundamental ideas, the logic behind their use seemed to evaporate. I was shocked. I didn't like priors. I didn't like Bayesian statistics. But after the smoke had cleared, that was all that was left. Basu loves counterexamples. He is like an art critic in the field of statistical inference. He would find a counterexample to the Bayesian approach if he could. So far, he has failed in this respect.
Advances in Order Restricted Statistical Inference
Author: Richard Dykstra
Publisher: Springer Science & Business Media
ISBN: 1461399408
Category : Mathematics
Languages : en
Pages : 305
Book Description
With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.
Publisher: Springer Science & Business Media
ISBN: 1461399408
Category : Mathematics
Languages : en
Pages : 305
Book Description
With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.
Topics in Statistical Information Theory
Author: Solomon Kullback
Publisher: Springer Science & Business Media
ISBN: 1461580803
Category : Mathematics
Languages : en
Pages : 169
Book Description
The relevance of information theory to statistical theory and its applications to stochastic processes is a unifying influence in these TOPICS. The integral representation of discrimination information is presented in these TOPICS reviewing various approaches used in the literature, and is also developed herein using intrinsically information-theoretic methods. Log likelihood ratios associated with various stochastic processes are computed by an application of minimum discrimination information estimates. Linear discriminant functionals are used in the information-theoretic analysis of a variety of stochastic processes. Sections are numbered serially within each chapter, with a decimal notation for subsections. Equations, examples, theorems and lemmas, are numbered serially within each section with a decimal notation. The digits to the left of the decimal point represent the section and the digits to the right of the decimal point the serial number within the section. When reference is made to a section, equation, example, theorem or lemma within the same chapter only the section number or equation number, etc., is given. When the reference is to a section ,equation, etc., in a different chapter, then in addition to the section or equation etc., number, the chapter number is also given. References to the bibliography are by the author's name followed by the year of publication in parentheses. The transpose of a matrix is denoted by a prime; thus one-row matrices are denoted by primes as the transposes of one-column matrices (vectors).
Publisher: Springer Science & Business Media
ISBN: 1461580803
Category : Mathematics
Languages : en
Pages : 169
Book Description
The relevance of information theory to statistical theory and its applications to stochastic processes is a unifying influence in these TOPICS. The integral representation of discrimination information is presented in these TOPICS reviewing various approaches used in the literature, and is also developed herein using intrinsically information-theoretic methods. Log likelihood ratios associated with various stochastic processes are computed by an application of minimum discrimination information estimates. Linear discriminant functionals are used in the information-theoretic analysis of a variety of stochastic processes. Sections are numbered serially within each chapter, with a decimal notation for subsections. Equations, examples, theorems and lemmas, are numbered serially within each section with a decimal notation. The digits to the left of the decimal point represent the section and the digits to the right of the decimal point the serial number within the section. When reference is made to a section, equation, example, theorem or lemma within the same chapter only the section number or equation number, etc., is given. When the reference is to a section ,equation, etc., in a different chapter, then in addition to the section or equation etc., number, the chapter number is also given. References to the bibliography are by the author's name followed by the year of publication in parentheses. The transpose of a matrix is denoted by a prime; thus one-row matrices are denoted by primes as the transposes of one-column matrices (vectors).
Asymptotic Expansions for General Statistical Models
Author: Johann Pfanzagl
Publisher: Springer Science & Business Media
ISBN: 1461564794
Category : Mathematics
Languages : en
Pages : 515
Book Description
0.1. The aim of the book Our "Contributions to a General Asymptotic Statistical Theory" (Springer Lecture Notes in Statistics, Vol. 13, 1982, called "Vol. I" in the following) suggest to describe the local structure of a general family ~ of probability measures by its tangent space, and the local behavior of a functional K: ~ ~~k by its gradient. Starting from these basic concepts, asymptotic envelope power functions for tests and asymptotic bounds for the concentration of estimators are obtained, and heuristic procedures are suggested for the construction of test- and estimator-sequences attaining these bounds. In the present volume, these asymptotic investigations are carried one step further: From approximations by limit distributions to approximations by Edgeworth expansions, 1 2 adding one term (of order n- / ) to the limit distribution. As in Vol. I, the investigation is "general" in the sense of dealing with arbitrary families of probability measures and arbitrary functionals. The investigation is special in the sense that it is restricted to statistical procedures based on independent, identically distributed observations. 2 Moreover, it is special in the sense that its concern are "regular" models (i.e. families of probability measures and functionals which are subject to certain general conditions, like differentiability). Irregular models are certainly of mathematical interest. Since they are hardly of any practical relevance, it appears justifiable to exclude them at this stage of the investigation.
Publisher: Springer Science & Business Media
ISBN: 1461564794
Category : Mathematics
Languages : en
Pages : 515
Book Description
0.1. The aim of the book Our "Contributions to a General Asymptotic Statistical Theory" (Springer Lecture Notes in Statistics, Vol. 13, 1982, called "Vol. I" in the following) suggest to describe the local structure of a general family ~ of probability measures by its tangent space, and the local behavior of a functional K: ~ ~~k by its gradient. Starting from these basic concepts, asymptotic envelope power functions for tests and asymptotic bounds for the concentration of estimators are obtained, and heuristic procedures are suggested for the construction of test- and estimator-sequences attaining these bounds. In the present volume, these asymptotic investigations are carried one step further: From approximations by limit distributions to approximations by Edgeworth expansions, 1 2 adding one term (of order n- / ) to the limit distribution. As in Vol. I, the investigation is "general" in the sense of dealing with arbitrary families of probability measures and arbitrary functionals. The investigation is special in the sense that it is restricted to statistical procedures based on independent, identically distributed observations. 2 Moreover, it is special in the sense that its concern are "regular" models (i.e. families of probability measures and functionals which are subject to certain general conditions, like differentiability). Irregular models are certainly of mathematical interest. Since they are hardly of any practical relevance, it appears justifiable to exclude them at this stage of the investigation.
Mathematical Statistics
Author: Dieter Rasch
Publisher: John Wiley & Sons
ISBN: 1119385237
Category : Mathematics
Languages : en
Pages : 846
Book Description
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.
Publisher: John Wiley & Sons
ISBN: 1119385237
Category : Mathematics
Languages : en
Pages : 846
Book Description
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.
Non-Regular Statistical Estimation
Author: Masafumi Akahira
Publisher: Springer Science & Business Media
ISBN: 146122554X
Category : Mathematics
Languages : en
Pages : 192
Book Description
In order to obtain many of the classical results in the theory of statistical estimation, it is usual to impose regularity conditions on the distributions under consideration. In small sample and large sample theories of estimation there are well established sets of regularity conditions, and it is worth while to examine what may follow if any one of these regularity conditions fail to hold. "Non-regular estimation" literally means the theory of statistical estimation when some or other of the regularity conditions fail to hold. In this monograph, the authors present a systematic study of the meaning and implications of regularity conditions, and show how the relaxation of such conditions can often lead to surprising conclusions. Their emphasis is on considering small sample results and to show how pathological examples may be considered in this broader framework.
Publisher: Springer Science & Business Media
ISBN: 146122554X
Category : Mathematics
Languages : en
Pages : 192
Book Description
In order to obtain many of the classical results in the theory of statistical estimation, it is usual to impose regularity conditions on the distributions under consideration. In small sample and large sample theories of estimation there are well established sets of regularity conditions, and it is worth while to examine what may follow if any one of these regularity conditions fail to hold. "Non-regular estimation" literally means the theory of statistical estimation when some or other of the regularity conditions fail to hold. In this monograph, the authors present a systematic study of the meaning and implications of regularity conditions, and show how the relaxation of such conditions can often lead to surprising conclusions. Their emphasis is on considering small sample results and to show how pathological examples may be considered in this broader framework.