Author: Pierre Grangeat
Publisher: Springer Science & Business Media
ISBN: 9401587493
Category : Medical
Languages : en
Pages : 313
Book Description
This book contains a selection of communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held 4-6 July 1995 at Domaine d' Aix-Marlioz, Aix-Ies-Bains, France. This nice resort provided an inspiring environment to hold discussions and presentations on new and developing issues. Roentgen discovered X-ray radiation in 1895 and Becquerel found natural radioactivity in 1896 : a hundred years later, this conference was focused on the applications of such radiations to explore the human body. If the physics is now fully understood, 3D imaging techniques based on ionising radiations are still progressing. These techniques include 3D Radiology, 3D X-ray Computed Tomography (3D-CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET). Radiology is dedicated to morphological imaging, using transmitted radiations from an external X-ray source, and nuclear medicine to functional imaging, using radiations emitted from an internal radioactive tracer. In both cases, new 3D tomographic systems will tend to use 2D detectors in order to improve the radiation detection efficiency. Taking a set of 2D acquisitions around the patient, 3D acquisitions are obtained. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the body from these projection measurements.
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
Author: Pierre Grangeat
Publisher: Springer Science & Business Media
ISBN: 9401587493
Category : Medical
Languages : en
Pages : 313
Book Description
This book contains a selection of communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held 4-6 July 1995 at Domaine d' Aix-Marlioz, Aix-Ies-Bains, France. This nice resort provided an inspiring environment to hold discussions and presentations on new and developing issues. Roentgen discovered X-ray radiation in 1895 and Becquerel found natural radioactivity in 1896 : a hundred years later, this conference was focused on the applications of such radiations to explore the human body. If the physics is now fully understood, 3D imaging techniques based on ionising radiations are still progressing. These techniques include 3D Radiology, 3D X-ray Computed Tomography (3D-CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET). Radiology is dedicated to morphological imaging, using transmitted radiations from an external X-ray source, and nuclear medicine to functional imaging, using radiations emitted from an internal radioactive tracer. In both cases, new 3D tomographic systems will tend to use 2D detectors in order to improve the radiation detection efficiency. Taking a set of 2D acquisitions around the patient, 3D acquisitions are obtained. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the body from these projection measurements.
Publisher: Springer Science & Business Media
ISBN: 9401587493
Category : Medical
Languages : en
Pages : 313
Book Description
This book contains a selection of communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held 4-6 July 1995 at Domaine d' Aix-Marlioz, Aix-Ies-Bains, France. This nice resort provided an inspiring environment to hold discussions and presentations on new and developing issues. Roentgen discovered X-ray radiation in 1895 and Becquerel found natural radioactivity in 1896 : a hundred years later, this conference was focused on the applications of such radiations to explore the human body. If the physics is now fully understood, 3D imaging techniques based on ionising radiations are still progressing. These techniques include 3D Radiology, 3D X-ray Computed Tomography (3D-CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET). Radiology is dedicated to morphological imaging, using transmitted radiations from an external X-ray source, and nuclear medicine to functional imaging, using radiations emitted from an internal radioactive tracer. In both cases, new 3D tomographic systems will tend to use 2D detectors in order to improve the radiation detection efficiency. Taking a set of 2D acquisitions around the patient, 3D acquisitions are obtained. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the body from these projection measurements.
The Theory and Practice of 3D PET
Author: B. Bendriem
Publisher: Springer Science & Business Media
ISBN: 9401734755
Category : Medical
Languages : en
Pages : 180
Book Description
The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.
Publisher: Springer Science & Business Media
ISBN: 9401734755
Category : Medical
Languages : en
Pages : 180
Book Description
The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.
Quantitative Nuclear Medicine Imaging
Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201415103
Category : Medical
Languages : en
Pages : 59
Book Description
This publication reviews the current state of the art of image quantification and provides a solid background of tools and methods to medical physicists and other related professionals who are faced with quantification of radionuclide distribution in clinical practice. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) images.
Publisher:
ISBN: 9789201415103
Category : Medical
Languages : en
Pages : 59
Book Description
This publication reviews the current state of the art of image quantification and provides a solid background of tools and methods to medical physicists and other related professionals who are faced with quantification of radionuclide distribution in clinical practice. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) images.
Medical Image Reconstruction
Author: Gengsheng Zeng
Publisher: Springer Science & Business Media
ISBN: 3642053688
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
Publisher: Springer Science & Business Media
ISBN: 3642053688
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
Emission Tomography
Author: Miles N. Wernick
Publisher: Elsevier
ISBN: 0080521878
Category : Science
Languages : en
Pages : 597
Book Description
PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork
Publisher: Elsevier
ISBN: 0080521878
Category : Science
Languages : en
Pages : 597
Book Description
PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork
Fundamentals of Medical Imaging
Author: Paul Suetens
Publisher: Cambridge University Press
ISBN: 1139479881
Category : Medical
Languages : en
Pages : 265
Book Description
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
Publisher: Cambridge University Press
ISBN: 1139479881
Category : Medical
Languages : en
Pages : 265
Book Description
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
Computational Radiology and Imaging
Author: Christoph Börgers
Publisher: Springer Science & Business Media
ISBN: 1461215501
Category : Mathematics
Languages : en
Pages : 293
Book Description
The articles collected in this volume are based on lectures given at the IMA Workshop, "Computational Radiology and Imaging: Therapy and Diagnostics", March 17-21, 1997. Introductory articles by the editors have been added. The focus is on inverse problems involving electromagnetic radiation and particle beams, with applications to X-ray tomography, nuclear medicine, near-infrared imaging, microwave imaging, electron microscopy, and radiation therapy planning. Mathematical and computational tools and models which play important roles in this volume include the X-ray transform and other integral transforms, the linear Boltzmann equation and, for near-infrared imaging, its diffusion approximation, iterative methods for large linear and non-linear least-squares problems, iterative methods for linear feasibility problems, and optimization methods. The volume is intended not only for mathematical scientists and engineers working on these and related problems, but also for non-specialists. It contains much introductory expository material, and a large number of references. Many unsolved computational and mathematical problems of substantial practical importance are pointed out.
Publisher: Springer Science & Business Media
ISBN: 1461215501
Category : Mathematics
Languages : en
Pages : 293
Book Description
The articles collected in this volume are based on lectures given at the IMA Workshop, "Computational Radiology and Imaging: Therapy and Diagnostics", March 17-21, 1997. Introductory articles by the editors have been added. The focus is on inverse problems involving electromagnetic radiation and particle beams, with applications to X-ray tomography, nuclear medicine, near-infrared imaging, microwave imaging, electron microscopy, and radiation therapy planning. Mathematical and computational tools and models which play important roles in this volume include the X-ray transform and other integral transforms, the linear Boltzmann equation and, for near-infrared imaging, its diffusion approximation, iterative methods for large linear and non-linear least-squares problems, iterative methods for linear feasibility problems, and optimization methods. The volume is intended not only for mathematical scientists and engineers working on these and related problems, but also for non-specialists. It contains much introductory expository material, and a large number of references. Many unsolved computational and mathematical problems of substantial practical importance are pointed out.
Deep Learning for Biomedical Image Reconstruction
Author: Jong Chul Ye
Publisher: Cambridge University Press
ISBN: 1009051024
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Publisher: Cambridge University Press
ISBN: 1009051024
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Quantitative Analysis in Nuclear Medicine Imaging
Author: Habib Zaidi
Publisher: Springer Science & Business Media
ISBN: 0387238549
Category : Science
Languages : en
Pages : 593
Book Description
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine instrumentation and dual-modality imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. A brief overview of each chapter is provided below. Chapter 1 presents a general overview of nuclear medicine imaging physics and instrumentation including planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Nowadays, patients’ diagnosis and therapy is rarely done without the use of imaging technology. As such, imaging considerations are incorporated in almost every chapter of the book. The development of dual-modality - aging systems is an emerging research field, which is addressed in chapter 2.
Publisher: Springer Science & Business Media
ISBN: 0387238549
Category : Science
Languages : en
Pages : 593
Book Description
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine instrumentation and dual-modality imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. A brief overview of each chapter is provided below. Chapter 1 presents a general overview of nuclear medicine imaging physics and instrumentation including planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Nowadays, patients’ diagnosis and therapy is rarely done without the use of imaging technology. As such, imaging considerations are incorporated in almost every chapter of the book. The development of dual-modality - aging systems is an emerging research field, which is addressed in chapter 2.
Medical Imaging Systems Technology: Modalities
Author: Cornelius T. Leondes
Publisher: World Scientific
ISBN: 9812569928
Category : Medical
Languages : en
Pages : 363
Book Description
This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.
Publisher: World Scientific
ISBN: 9812569928
Category : Medical
Languages : en
Pages : 363
Book Description
This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.