Author: Jianfeng Feng
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411
Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Frontiers in Computational and Systems Biology
Author: Jianfeng Feng
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411
Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411
Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Simulation Algorithms for Computational Systems Biology
Author: Luca Marchetti
Publisher: Springer
ISBN: 3319631136
Category : Computers
Languages : en
Pages : 245
Book Description
This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.
Publisher: Springer
ISBN: 3319631136
Category : Computers
Languages : en
Pages : 245
Book Description
This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.
Systems Biology of Transcription Regulation
Author: Ekaterina Shelest
Publisher: Frontiers Media SA
ISBN: 2889199673
Category : Biotechnology
Languages : en
Pages : 191
Book Description
Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signaling pathways and ending up with the TF binding sites in the promoters and other regulatory regions. However, it is obvious that the TF regulation, also including the upstream processes, represents a modest portion of all processes leading to gene expression. For more comprehensive description of the gene regulation, we need a systematic and holistic view, which brings us to the importance of systems biology approaches. Advances in methodology, especially in high-throughput methods, result in an ever-growing mass of data, which in many cases is still waiting for appropriate consideration. Moreover, the accumulation of data is going faster than the development of algorithms for their systematic evaluation. Data and methods integration is indispensable for the acquiring a systematic as well as a systemic view. In addition to the huge amount of molecular or genetic components of a biological system, the even larger number of their interactions constitutes the enormous complexity of processes occurring in a living cell (organ, organism). In systems biology, these interactions are represented by networks. Transcriptional or, more generally, gene regulatory networks are being generated from experimental ChIPseq data, by reverse engineering from transcriptomics data, or from computational predictions of transcription factor (TF) – target gene relations. While transcriptional networks are now available for many biological systems, mathematical models to simulate their dynamic behavior have been successfully developed for metabolic and, to some extent, for signaling networks, but relatively rarely for gene regulatory networks. Systems biology approaches provide new perspectives that raise new questions. Some of them address methodological problems, others arise from the newly obtained understanding of the data. These open questions and problems are also a subject of this Research Topic.
Publisher: Frontiers Media SA
ISBN: 2889199673
Category : Biotechnology
Languages : en
Pages : 191
Book Description
Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signaling pathways and ending up with the TF binding sites in the promoters and other regulatory regions. However, it is obvious that the TF regulation, also including the upstream processes, represents a modest portion of all processes leading to gene expression. For more comprehensive description of the gene regulation, we need a systematic and holistic view, which brings us to the importance of systems biology approaches. Advances in methodology, especially in high-throughput methods, result in an ever-growing mass of data, which in many cases is still waiting for appropriate consideration. Moreover, the accumulation of data is going faster than the development of algorithms for their systematic evaluation. Data and methods integration is indispensable for the acquiring a systematic as well as a systemic view. In addition to the huge amount of molecular or genetic components of a biological system, the even larger number of their interactions constitutes the enormous complexity of processes occurring in a living cell (organ, organism). In systems biology, these interactions are represented by networks. Transcriptional or, more generally, gene regulatory networks are being generated from experimental ChIPseq data, by reverse engineering from transcriptomics data, or from computational predictions of transcription factor (TF) – target gene relations. While transcriptional networks are now available for many biological systems, mathematical models to simulate their dynamic behavior have been successfully developed for metabolic and, to some extent, for signaling networks, but relatively rarely for gene regulatory networks. Systems biology approaches provide new perspectives that raise new questions. Some of them address methodological problems, others arise from the newly obtained understanding of the data. These open questions and problems are also a subject of this Research Topic.
Python Programming for Biology
Author: Tim J. Stevens
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages : 721
Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages : 721
Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.
Frontiers in Computational Chemistry
Author: Zaheer Ul-Haq
Publisher: Bentham Science Publishers
ISBN: 1681081679
Category : Science
Languages : en
Pages : 372
Book Description
Frontiers in Computational Chemistry presents contemporary research on molecular modeling techniques used in drug discovery and the drug development process: computer aided molecular design, drug discovery and development, lead generation, lead optimization, database management, computer and molecular graphics, and the development of new computational methods or efficient algorithms for the simulation of chemical phenomena including analyses of biological activity. The third volume of this series features four chapters covering in silico approaches to computer aided drug design, modeling of platinum and adjuvant anti-cancer drugs, allostery in proteins and studies on the theory of chemical space in electron systems.
Publisher: Bentham Science Publishers
ISBN: 1681081679
Category : Science
Languages : en
Pages : 372
Book Description
Frontiers in Computational Chemistry presents contemporary research on molecular modeling techniques used in drug discovery and the drug development process: computer aided molecular design, drug discovery and development, lead generation, lead optimization, database management, computer and molecular graphics, and the development of new computational methods or efficient algorithms for the simulation of chemical phenomena including analyses of biological activity. The third volume of this series features four chapters covering in silico approaches to computer aided drug design, modeling of platinum and adjuvant anti-cancer drugs, allostery in proteins and studies on the theory of chemical space in electron systems.
Integrating Visual System Mechanisms, Computational Models and Algorithms/Technologies
Author: Hedva Spitzer
Publisher: Frontiers Media SA
ISBN: 2889635104
Category :
Languages : en
Pages : 233
Book Description
Publisher: Frontiers Media SA
ISBN: 2889635104
Category :
Languages : en
Pages : 233
Book Description
Frontiers in Mathematical Biology
Author: Simon A. Levin
Publisher: Springer Science & Business Media
ISBN: 3642501249
Category : Mathematics
Languages : en
Pages : 637
Book Description
From a mathematical point of view, physiologically structured population models are an underdeveloped branch of the theory of infinite dimensional dynamical systems. We have called attention to four aspects: (i) A choice has to be made about the kind of equations one extracts from the predominantly verbal arguments about the basic assumptions, and subsequently uses as a starting point for a rigorous mathematical analysis. Though differential equations are easy to formulate (different mechanisms don't interact in infinites imal time intervals and so end up as separate terms in the equations) they may be hard to interpret rigorously as infinitesimal generators. Integral equations constitute an attractive alternative. (ii) The ability of physiologically structured population models to increase our un derstanding of the relation between mechanisms at the i-level and phenomena at the p-level will depend strongly on the development of dynamical systems lab facilities which are applicable to this class of models. (iii) Physiologically structured population models are ideally suited for the for mulation of evolutionary questions. Apart from the special case of age (see Charlesworth 1980, Yodzis 1989, Caswell 1989, and the references given there) hardly any theory exists at the moment. This will, hopefully, change rapidly in the coming years. Again the development of appropriate software may turn out to be crucial.
Publisher: Springer Science & Business Media
ISBN: 3642501249
Category : Mathematics
Languages : en
Pages : 637
Book Description
From a mathematical point of view, physiologically structured population models are an underdeveloped branch of the theory of infinite dimensional dynamical systems. We have called attention to four aspects: (i) A choice has to be made about the kind of equations one extracts from the predominantly verbal arguments about the basic assumptions, and subsequently uses as a starting point for a rigorous mathematical analysis. Though differential equations are easy to formulate (different mechanisms don't interact in infinites imal time intervals and so end up as separate terms in the equations) they may be hard to interpret rigorously as infinitesimal generators. Integral equations constitute an attractive alternative. (ii) The ability of physiologically structured population models to increase our un derstanding of the relation between mechanisms at the i-level and phenomena at the p-level will depend strongly on the development of dynamical systems lab facilities which are applicable to this class of models. (iii) Physiologically structured population models are ideally suited for the for mulation of evolutionary questions. Apart from the special case of age (see Charlesworth 1980, Yodzis 1989, Caswell 1989, and the references given there) hardly any theory exists at the moment. This will, hopefully, change rapidly in the coming years. Again the development of appropriate software may turn out to be crucial.
A First Course in Systems Biology
Author: Eberhard Voit
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Stochastic Dynamics in Computational Biology
Author: Stefanie Winkelmann
Publisher: Springer Nature
ISBN: 3030623874
Category : Mathematics
Languages : en
Pages : 284
Book Description
The aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.
Publisher: Springer Nature
ISBN: 3030623874
Category : Mathematics
Languages : en
Pages : 284
Book Description
The aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.
Systems Biology of Cell Signaling
Author: Zhike Zi
Publisher: Frontiers Media SA
ISBN: 2889742814
Category : Science
Languages : en
Pages : 224
Book Description
Topic Editor Prof. Xing is in collaboration with ATCC (https://www.atcc.org/) on testing some of their cell lines in research. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Publisher: Frontiers Media SA
ISBN: 2889742814
Category : Science
Languages : en
Pages : 224
Book Description
Topic Editor Prof. Xing is in collaboration with ATCC (https://www.atcc.org/) on testing some of their cell lines in research. All other Topic Editors declare no competing interests with regards to the Research Topic subject.