From Lévy-Type Processes to Parabolic SPDEs

From Lévy-Type Processes to Parabolic SPDEs PDF Author: Davar Khoshnevisan
Publisher: Birkhäuser
ISBN: 3319341200
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

From Lévy-Type Processes to Parabolic SPDEs

From Lévy-Type Processes to Parabolic SPDEs PDF Author: Davar Khoshnevisan
Publisher: Birkhäuser
ISBN: 3319341200
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

Lévy Matters VI

Lévy Matters VI PDF Author: Franziska Kühn
Publisher: Springer
ISBN: 3319608886
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
Presenting some recent results on the construction and the moments of Lévy-type processes, the focus of this volume is on a new existence theorem, which is proved using a parametrix construction. Applications range from heat kernel estimates for a class of Lévy-type processes to existence and uniqueness theorems for Lévy-driven stochastic differential equations with Hölder continuous coefficients. Moreover, necessary and sufficient conditions for the existence of moments of Lévy-type processes are studied and some estimates on moments are derived. Lévy-type processes behave locally like Lévy processes but, in contrast to Lévy processes, they are not homogeneous in space. Typical examples are processes with varying index of stability and solutions of Lévy-driven stochastic differential equations. This is the sixth volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject, with special emphasis on the non-Brownian world.

Semigroups of Linear Operators

Semigroups of Linear Operators PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 1108623522
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille–Yosida and Lumer–Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller–Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann–Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.

Brownian Motion

Brownian Motion PDF Author: René L. Schilling
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311074127X
Category : Mathematics
Languages : en
Pages : 533

Get Book Here

Book Description
Stochastic processes occur everywhere in the sciences, economics and engineering, and they need to be understood by (applied) mathematicians, engineers and scientists alike. This book gives a gentle introduction to Brownian motion and stochastic processes, in general. Brownian motion plays a special role, since it shaped the whole subject, displays most random phenomena while being still easy to treat, and is used in many real-life models. Im this new edition, much material is added, and there are new chapters on ''Wiener Chaos and Iterated Itô Integrals'' and ''Brownian Local Times''.

Integro-Differential Elliptic Equations

Integro-Differential Elliptic Equations PDF Author: Xavier Fernández-Real
Publisher: Springer Nature
ISBN: 3031542428
Category : Differential equations, Elliptic
Languages : en
Pages : 409

Get Book Here

Book Description
Zusammenfassung: This monograph offers a self-contained introduction to the regularity theory for integro-differential elliptic equations, mostly developed in the 21st century. This class of equations finds relevance in fields such as analysis, probability theory, mathematical physics, and in several contexts in the applied sciences. The work gives a detailed presentation of all the necessary techniques, with a primary focus on the main ideas rather than on proving all the results in their greatest generality. The basic building blocks are presented first, with the study of the square root of the Laplacian, and weak solutions to linear equations. Subsequently, the theory of viscosity solutions to nonlinear equations is developed, and proofs are provided for the main known results in this context. The analysis finishes with the investigation of obstacle problems for integro-differential operators and establishes the regularity of solutions and free boundaries. A distinctive feature of this work lies in its presentation of nearly all covered material in a monographic format for the first time, and several proofs streamline, and often simplify, those in the original papers. Furthermore, various open problems are listed throughout the chapters

Lévy Processes

Lévy Processes PDF Author: Ole E. Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 9780817641672
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 1139477986
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise PDF Author: Arnaud Debussche
Publisher: Springer
ISBN: 3319008285
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics

Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics PDF Author: Victor A. Sadovnichiy
Publisher: Springer Nature
ISBN: 303050302X
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
This book focuses on the latest approaches and methods in fundamental mathematics and mechanics, and discusses the practical application of abstract mathematical approaches, such as differential geometry, and differential and difference equations in solid mechanics, hydrodynamics, aerodynamics, optimization, decision-making theory and control theory. Featuring selected contributions to the open seminar series of Lomonosov Moscow State University and Igor Sikorsky Kyiv Polytechnic Institute by mathematicians from China, Germany, France, Italy, Spain, Russia, Ukraine and the USA, the book will appeal to mathematicians and engineers working at the interface of these fields

Stochastic Partial Differential Equations with Lévy Noise

Stochastic Partial Differential Equations with Lévy Noise PDF Author: S. Peszat
Publisher: Cambridge University Press
ISBN: 0521879892
Category : Mathematics
Languages : en
Pages : 45

Get Book Here

Book Description
Comprehensive monograph by two leading international experts; includes applications to statistical and fluid mechanics and to finance.