Author: Gérard Favier
Publisher: John Wiley & Sons
ISBN: 1786301547
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Nowadays, tensors play a central role for the representation, mining, analysis, and fusion of multidimensional, multimodal, and heterogeneous big data in numerous fields. This set on Matrices and Tensors in Signal Processing aims at giving a self-contained and comprehensive presentation of various concepts and methods, starting from fundamental algebraic structures to advanced tensor-based applications, including recently developed tensor models and efficient algorithms for dimensionality reduction and parameter estimation. Although its title suggests an orientation towards signal processing, the results presented in this set will also be of use to readers interested in other disciplines. This first book provides an introduction to matrices and tensors of higher-order based on the structures of vector space and tensor space. Some standard algebraic structures are first described, with a focus on the hilbertian approach for signal representation, and function approximation based on Fourier series and orthogonal polynomial series. Matrices and hypermatrices associated with linear, bilinear and multilinear maps are more particularly studied. Some basic results are presented for block matrices. The notions of decomposition, rank, eigenvalue, singular value, and unfolding of a tensor are introduced, by emphasizing similarities and differences between matrices and tensors of higher-order.
From Algebraic Structures to Tensors
Introduction to Vectors and Tensors
Author: Ray M. Bowen
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Matrix and Tensor Decompositions in Signal Processing, Volume 2
Author: Gérard Favier
Publisher: John Wiley & Sons
ISBN: 1119700965
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Publisher: John Wiley & Sons
ISBN: 1119700965
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
From Vectors to Tensors
Author: Juan R. Ruiz-Tolosa
Publisher: Springer Science & Business Media
ISBN: 3540270663
Category : Computers
Languages : en
Pages : 675
Book Description
This textbook deals with tensors that are treated as vectors. Coverage details such new tensor concepts as the rotation of tensors, the transposer tensor, the eigentensors, and the permutation tensor structure. The book covers an existing gap between the classic theory of tensors and the possibility of solving tensor problems with a computer. A complementary computer package, written in Mathematica, is available through the Internet.
Publisher: Springer Science & Business Media
ISBN: 3540270663
Category : Computers
Languages : en
Pages : 675
Book Description
This textbook deals with tensors that are treated as vectors. Coverage details such new tensor concepts as the rotation of tensors, the transposer tensor, the eigentensors, and the permutation tensor structure. The book covers an existing gap between the classic theory of tensors and the possibility of solving tensor problems with a computer. A complementary computer package, written in Mathematica, is available through the Internet.
Lectures on Algebraic Statistics
Author: Mathias Drton
Publisher: Springer Science & Business Media
ISBN: 3764389052
Category : Mathematics
Languages : en
Pages : 177
Book Description
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Publisher: Springer Science & Business Media
ISBN: 3764389052
Category : Mathematics
Languages : en
Pages : 177
Book Description
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Tensor Analysis on Manifolds
Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
An Introduction to Tensors and Group Theory for Physicists
Author: Nadir Jeevanjee
Publisher: Birkhäuser
ISBN: 3319147943
Category : Science
Languages : en
Pages : 317
Book Description
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
Publisher: Birkhäuser
ISBN: 3319147943
Category : Science
Languages : en
Pages : 317
Book Description
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
A Physicist's Introduction to Algebraic Structures
Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 1108661394
Category : Science
Languages : en
Pages : 718
Book Description
An algebraic structure consists of a set of elements, with some rule of combining them, or some special property of selected subsets of the entire set. Many algebraic structures, such as vector space and group, come to everyday use of a modern physicist. Catering to the needs of graduate students and researchers in the field of mathematical physics and theoretical physics, this comprehensive and valuable text discusses the essential concepts of algebraic structures such as metric space, group, modular numbers, algebraic integers, field, vector space, Boolean algebra, measure space and Lebesgue integral. Important topics including finite and infinite dimensional vector spaces, finite groups and their representations, unitary groups and their representations and representations of the Lorentz group, homotopy and homology of topological spaces are covered extensively. Rich pedagogy includes various problems interspersed throughout the book for better understanding of concepts.
Publisher: Cambridge University Press
ISBN: 1108661394
Category : Science
Languages : en
Pages : 718
Book Description
An algebraic structure consists of a set of elements, with some rule of combining them, or some special property of selected subsets of the entire set. Many algebraic structures, such as vector space and group, come to everyday use of a modern physicist. Catering to the needs of graduate students and researchers in the field of mathematical physics and theoretical physics, this comprehensive and valuable text discusses the essential concepts of algebraic structures such as metric space, group, modular numbers, algebraic integers, field, vector space, Boolean algebra, measure space and Lebesgue integral. Important topics including finite and infinite dimensional vector spaces, finite groups and their representations, unitary groups and their representations and representations of the Lorentz group, homotopy and homology of topological spaces are covered extensively. Rich pedagogy includes various problems interspersed throughout the book for better understanding of concepts.
Physical Components of Tensors
Author: Wolf Altman
Publisher: CRC Press
ISBN: 1482263831
Category : Mathematics
Languages : en
Pages : 235
Book Description
Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.
Publisher: CRC Press
ISBN: 1482263831
Category : Mathematics
Languages : en
Pages : 235
Book Description
Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.
Visualization and Processing of Tensor Fields
Author: David H. Laidlaw
Publisher: Springer Science & Business Media
ISBN: 3540883789
Category : Mathematics
Languages : en
Pages : 379
Book Description
This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.
Publisher: Springer Science & Business Media
ISBN: 3540883789
Category : Mathematics
Languages : en
Pages : 379
Book Description
This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.