Author: Herb Kunze
Publisher: Springer Science & Business Media
ISBN: 1461418917
Category : Mathematics
Languages : en
Pages : 417
Book Description
The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.
Fractal-Based Methods in Analysis
Fractal Analysis
Author: Clifford Brown
Publisher: SAGE Publications
ISBN: 148334312X
Category : Social Science
Languages : en
Pages : 113
Book Description
A specialized presentation of fractal analysis oriented to the social sciences This primer uses straightforward language to give the reader step-by-step instructions for identifying and analyzing fractal patterns and the social process that create them. By making fractals accessible to the social science students, this book has a significant impact on the understanding of human behavior. This is the only book designed to introduce fractal analysis to a general social science audience.
Publisher: SAGE Publications
ISBN: 148334312X
Category : Social Science
Languages : en
Pages : 113
Book Description
A specialized presentation of fractal analysis oriented to the social sciences This primer uses straightforward language to give the reader step-by-step instructions for identifying and analyzing fractal patterns and the social process that create them. By making fractals accessible to the social science students, this book has a significant impact on the understanding of human behavior. This is the only book designed to introduce fractal analysis to a general social science audience.
Fractals in Probability and Analysis
Author: Christopher J. Bishop
Publisher: Cambridge University Press
ISBN: 1107134110
Category : Mathematics
Languages : en
Pages : 415
Book Description
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
Publisher: Cambridge University Press
ISBN: 1107134110
Category : Mathematics
Languages : en
Pages : 415
Book Description
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
Fractals
Author: Dinesh Kumar
Publisher: CRC Press
ISBN: 1351678388
Category : Mathematics
Languages : en
Pages : 134
Book Description
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Publisher: CRC Press
ISBN: 1351678388
Category : Mathematics
Languages : en
Pages : 134
Book Description
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Fractals: A Very Short Introduction
Author: Kenneth Falconer
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Harmonic Analysis And Fractal Analysis Over Local Fields And Applications
Author: Weiyi Su
Publisher: World Scientific
ISBN: 9813200529
Category : Mathematics
Languages : en
Pages : 331
Book Description
This book is a monograph on harmonic analysis and fractal analysis over local fields. It can also be used as lecture notes/textbook or as recommended reading for courses on modern harmonic and fractal analysis. It is as reliable as Fourier Analysis on Local Fields published in 1975 which is regarded as the first monograph in this research field.The book is self-contained, with wide scope and deep knowledge, taking modern mathematics (such as modern algebra, point set topology, functional analysis, distribution theory, and so on) as bases. Specially, fractal analysis is studied in the viewpoint of local fields, and fractal calculus is established by pseudo-differential operators over local fields. A frame of fractal PDE is constructed based on fractal calculus instead of classical calculus. On the other hand, the author does his best to make those difficult concepts accessible to readers, illustrate clear comparison between harmonic analysis on Euclidean spaces and that on local fields, and at the same time provide motivations underlying the new concepts and techniques. Overall, it is a high quality, up to date and valuable book for interested readers.
Publisher: World Scientific
ISBN: 9813200529
Category : Mathematics
Languages : en
Pages : 331
Book Description
This book is a monograph on harmonic analysis and fractal analysis over local fields. It can also be used as lecture notes/textbook or as recommended reading for courses on modern harmonic and fractal analysis. It is as reliable as Fourier Analysis on Local Fields published in 1975 which is regarded as the first monograph in this research field.The book is self-contained, with wide scope and deep knowledge, taking modern mathematics (such as modern algebra, point set topology, functional analysis, distribution theory, and so on) as bases. Specially, fractal analysis is studied in the viewpoint of local fields, and fractal calculus is established by pseudo-differential operators over local fields. A frame of fractal PDE is constructed based on fractal calculus instead of classical calculus. On the other hand, the author does his best to make those difficult concepts accessible to readers, illustrate clear comparison between harmonic analysis on Euclidean spaces and that on local fields, and at the same time provide motivations underlying the new concepts and techniques. Overall, it is a high quality, up to date and valuable book for interested readers.
Fractal-Based Point Processes
Author: Steven Bradley Lowen
Publisher: John Wiley & Sons
ISBN: 0471754706
Category : Mathematics
Languages : en
Pages : 628
Book Description
An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, and all solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.
Publisher: John Wiley & Sons
ISBN: 0471754706
Category : Mathematics
Languages : en
Pages : 628
Book Description
An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, and all solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.
The Fractal Geometry of the Brain
Author: Antonio Di Ieva
Publisher: Springer
ISBN: 1493939955
Category : Medical
Languages : en
Pages : 583
Book Description
Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology.
Publisher: Springer
ISBN: 1493939955
Category : Medical
Languages : en
Pages : 583
Book Description
Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology.
Fractals in Biology and Medicine
Author: Gabriele A. Losa
Publisher: Springer Science & Business Media
ISBN: 9783764364748
Category : Computers
Languages : en
Pages : 382
Book Description
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.
Publisher: Springer Science & Business Media
ISBN: 9783764364748
Category : Computers
Languages : en
Pages : 382
Book Description
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.
Fractal Analysis
Author: Fernando Brambila
Publisher: BoD – Books on Demand
ISBN: 9535131915
Category : Mathematics
Languages : en
Pages : 296
Book Description
Fractal analysis has entered a new era. The applications to different areas of knowledge have been surprising. Let us begin with the fractional calculus-fractal geometry relationship, which allows for modeling with extreme precision of phenomena such as diffusion in porous media with fractional partial differential equations in fractal objects. Where the order of the equation is the same as the fractal dimension, this allows us to make calculations with enormous precision in diffusion phenomena-particularly in the oil industry, for new spillage prevention. Main applications to industry, design of fractal antennas to receive all frequencies and that is used in all cell phones, spacecraft, radars, image processing, measure, porosity, turbulence, scattering theory. Benoit Mandelbrot, creator of fractal geometry, would have been surprised by the use of fractal analysis presented in this book: "Part I: Petroleum Industry and Numerical Analysis"; "Part II: Fractal Antennas, Spacecraft, Radars, Image Processing, and Measure"; and "Part III: Scattering Theory, Porosity, and Turbulence." It's impossible to picture today's research without fractal analysis.
Publisher: BoD – Books on Demand
ISBN: 9535131915
Category : Mathematics
Languages : en
Pages : 296
Book Description
Fractal analysis has entered a new era. The applications to different areas of knowledge have been surprising. Let us begin with the fractional calculus-fractal geometry relationship, which allows for modeling with extreme precision of phenomena such as diffusion in porous media with fractional partial differential equations in fractal objects. Where the order of the equation is the same as the fractal dimension, this allows us to make calculations with enormous precision in diffusion phenomena-particularly in the oil industry, for new spillage prevention. Main applications to industry, design of fractal antennas to receive all frequencies and that is used in all cell phones, spacecraft, radars, image processing, measure, porosity, turbulence, scattering theory. Benoit Mandelbrot, creator of fractal geometry, would have been surprised by the use of fractal analysis presented in this book: "Part I: Petroleum Industry and Numerical Analysis"; "Part II: Fractal Antennas, Spacecraft, Radars, Image Processing, and Measure"; and "Part III: Scattering Theory, Porosity, and Turbulence." It's impossible to picture today's research without fractal analysis.