Fourier Analysis on Number Fields

Fourier Analysis on Number Fields PDF Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Fourier Analysis on Number Fields

Fourier Analysis on Number Fields PDF Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

An Introduction to the Langlands Program

An Introduction to the Langlands Program PDF Author: Joseph Bernstein
Publisher: Springer Science & Business Media
ISBN: 0817682260
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.

Advanced Analytic Number Theory: L-Functions

Advanced Analytic Number Theory: L-Functions PDF Author: Carlos J. Moreno
Publisher: American Mathematical Soc.
ISBN: 0821842668
Category : Mathematics
Languages : en
Pages : 313

Get Book Here

Book Description
Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.

Zeta Functions of Simple Algebras

Zeta Functions of Simple Algebras PDF Author: Roger Godement
Publisher: Springer
ISBN: 3540374361
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description


Hecke’s L-functions

Hecke’s L-functions PDF Author: Kenkichi Iwasawa
Publisher: Springer Nature
ISBN: 9811394954
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke’s L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate’s thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa’s work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields.

Combinatorial Number Theory

Combinatorial Number Theory PDF Author: Bruce Landman
Publisher: Walter de Gruyter
ISBN: 3110208504
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
This volume contains selected refereed papers based on lectures presented at the ‘Integers Conference 2007’, an international conference in combinatorial number theory that was held in Carrollton, Georgia in October 2007. The proceedings include contributions from many distinguished speakers, including George Andrews, Neil Hindman, Florian Luca, Carl Pomerance, Ken Ono and Igor E. Shparlinski. Among the topics considered in these papers are additive number theory, multiplicative number theory, sequences, elementary number theory, theory of partitions, and Ramsey theory.

Arithmetic of L-functions

Arithmetic of L-functions PDF Author: Cristian Popescu
Publisher: American Mathematical Soc.
ISBN: 0821886983
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description


Automorphic Forms on GL (2)

Automorphic Forms on GL (2) PDF Author: H. Jacquet
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description


Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions PDF Author: Michel L. Lapidus
Publisher: Springer Science & Business Media
ISBN: 1461421764
Category : Mathematics
Languages : en
Pages : 583

Get Book Here

Book Description
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

From Arithmetic to Zeta-Functions

From Arithmetic to Zeta-Functions PDF Author: Jürgen Sander
Publisher: Springer
ISBN: 3319282034
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.