Author: D.G. Rees
Publisher: CRC Press
ISBN: 9780412285608
Category : Mathematics
Languages : en
Pages : 564
Book Description
This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Foundations of Statistics
Author: D.G. Rees
Publisher: CRC Press
ISBN: 9780412285608
Category : Mathematics
Languages : en
Pages : 564
Book Description
This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Publisher: CRC Press
ISBN: 9780412285608
Category : Mathematics
Languages : en
Pages : 564
Book Description
This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
The Foundations of Statistics: A Simulation-based Approach
Author: Shravan Vasishth
Publisher: Springer Science & Business Media
ISBN: 3642163130
Category : Mathematics
Languages : en
Pages : 187
Book Description
Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA
Publisher: Springer Science & Business Media
ISBN: 3642163130
Category : Mathematics
Languages : en
Pages : 187
Book Description
Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA
Foundations and Applications of Statistics
Author: Randall Pruim
Publisher: American Mathematical Soc.
ISBN: 1470428482
Category : Computers
Languages : en
Pages : 842
Book Description
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Publisher: American Mathematical Soc.
ISBN: 1470428482
Category : Computers
Languages : en
Pages : 842
Book Description
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Foundations of Statistics for Data Scientists
Author: Alan Agresti
Publisher: CRC Press
ISBN: 1000462919
Category : Business & Economics
Languages : en
Pages : 486
Book Description
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Publisher: CRC Press
ISBN: 1000462919
Category : Business & Economics
Languages : en
Pages : 486
Book Description
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
The Foundations of Statistics
Author: Leonard J. Savage
Publisher: Courier Corporation
ISBN: 0486137104
Category : Mathematics
Languages : en
Pages : 341
Book Description
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Publisher: Courier Corporation
ISBN: 0486137104
Category : Mathematics
Languages : en
Pages : 341
Book Description
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Fundamentals of Descriptive Statistics
Author: Zealure C Holcomb
Publisher: Routledge
ISBN: 1351970321
Category : Psychology
Languages : en
Pages : 95
Book Description
• Do your students need to organize and summarize data for term projects? Will they need to perform these tasks on the job? This book gives them thorough preparation. • In twelve short chapters, your students will learn the purposes of descriptive statistics, their calculation, and proper interpretation. • Actual data on the emotional health of foster-care adolescents are used throughout the book to illustrate various ways of deriving meaning from the data with descriptive statistics. Other interesting examples are also included. • Computational procedures are illustrated with step-by-step, easy-to-follow examples. • End-of-chapter exercises provide ample practice for students to master both computations and statistical concepts. • Eliminates the need for students to buy a traditional statistics book that emphasizes inferential statistics. • Thoroughly field-tested for student comprehension. • This book will please you and your students with its clarity of presentation. • Outstanding supplement for students who need to describe term project data.
Publisher: Routledge
ISBN: 1351970321
Category : Psychology
Languages : en
Pages : 95
Book Description
• Do your students need to organize and summarize data for term projects? Will they need to perform these tasks on the job? This book gives them thorough preparation. • In twelve short chapters, your students will learn the purposes of descriptive statistics, their calculation, and proper interpretation. • Actual data on the emotional health of foster-care adolescents are used throughout the book to illustrate various ways of deriving meaning from the data with descriptive statistics. Other interesting examples are also included. • Computational procedures are illustrated with step-by-step, easy-to-follow examples. • End-of-chapter exercises provide ample practice for students to master both computations and statistical concepts. • Eliminates the need for students to buy a traditional statistics book that emphasizes inferential statistics. • Thoroughly field-tested for student comprehension. • This book will please you and your students with its clarity of presentation. • Outstanding supplement for students who need to describe term project data.
Statistical Foundations of Data Science
Author: Jianqing Fan
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 974
Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 974
Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Fundamentals of Statistics
Author: Michael Sullivan III
Publisher: Pearson
ISBN: 0321947207
Category : Mathematics
Languages : en
Pages : 686
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Drawing upon his passion for statistics and teaching, Mike Sullivan addresses the needs of today’s students, the challenges teachers face, and changes in the statistics community. With feedback from his own students and classroom experience, Fundamentals of Statistics provides the tools to help students learn better and think statistically in a concise, friendly presentation. The CD conatins all the student supplement content , the data sets, graphing calculator manual, excel manual, a PDF of the Formula and Table card from the back of the book, and a guide to using statcrunch with the title. Note: This is just the standalone book and CD, it does not come with an Access Card. If an Access Card is required ask your instructor for the ISBN of the package which would include the Book & CD plus the Access Card..
Publisher: Pearson
ISBN: 0321947207
Category : Mathematics
Languages : en
Pages : 686
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Drawing upon his passion for statistics and teaching, Mike Sullivan addresses the needs of today’s students, the challenges teachers face, and changes in the statistics community. With feedback from his own students and classroom experience, Fundamentals of Statistics provides the tools to help students learn better and think statistically in a concise, friendly presentation. The CD conatins all the student supplement content , the data sets, graphing calculator manual, excel manual, a PDF of the Formula and Table card from the back of the book, and a guide to using statcrunch with the title. Note: This is just the standalone book and CD, it does not come with an Access Card. If an Access Card is required ask your instructor for the ISBN of the package which would include the Book & CD plus the Access Card..
OpenIntro Statistics
Author: David Diez
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Foundations of Agnostic Statistics
Author: Peter M. Aronow
Publisher: Cambridge University Press
ISBN: 1107178916
Category : Mathematics
Languages : en
Pages : 317
Book Description
Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.
Publisher: Cambridge University Press
ISBN: 1107178916
Category : Mathematics
Languages : en
Pages : 317
Book Description
Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.