Genetic Algorithm Essentials

Genetic Algorithm Essentials PDF Author: Oliver Kramer
Publisher: Springer
ISBN: 331952156X
Category : Technology & Engineering
Languages : en
Pages : 94

Get Book Here

Book Description
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

Genetic Algorithm Essentials

Genetic Algorithm Essentials PDF Author: Oliver Kramer
Publisher: Springer
ISBN: 331952156X
Category : Technology & Engineering
Languages : en
Pages : 94

Get Book Here

Book Description
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

Foundations of Global Genetic Optimization

Foundations of Global Genetic Optimization PDF Author: Robert Schaefer
Publisher: Springer
ISBN: 354073192X
Category : Technology & Engineering
Languages : en
Pages : 227

Get Book Here

Book Description
Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.

Foundations of Genetic Algorithms 3

Foundations of Genetic Algorithms 3 PDF Author: L. Darrell Whitley
Publisher:
ISBN:
Category : Combinatorial optimization
Languages : en
Pages : 352

Get Book Here

Book Description


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms PDF Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms in Search, Optimization, and Machine Learning PDF Author: David Edward Goldberg
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 436

Get Book Here

Book Description
A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.

Genetic Programming III

Genetic Programming III PDF Author: John R. Koza
Publisher: Morgan Kaufmann
ISBN: 9781558605435
Category : Computers
Languages : en
Pages : 1516

Get Book Here

Book Description
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799880990
Category : Computers
Languages : en
Pages : 1534

Get Book Here

Book Description
Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.

Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs PDF Author: Zbigniew Michalewicz
Publisher: Springer Science & Business Media
ISBN: 3662028301
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu lation of individuals (potential solutions) undergoes a sequence of unary (muta tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim ilarities between them we use the common term "evolution programs" .

Foundations of Genetic Algorithms 1993 (FOGA 2)

Foundations of Genetic Algorithms 1993 (FOGA 2) PDF Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 0080948324
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Foundations of Genetic Algorithms, Volume 2 provides insight of theoretical work in genetic algorithms. This book provides a general understanding of a canonical genetic algorithm. Organized into six parts encompassing 19 chapters, this volume begins with an overview of genetic algorithms in the broader adaptive systems context. This text then reviews some results in mathematical genetics that use probability distributions to characterize the effects of recombination on multiple loci in the absence of selection. Other chapters examine the static building block hypothesis (SBBH), which is the underlying assumption used to define deception. This book discusses as well the effect of noise on the quality of convergence of genetic algorithms. The final chapter deals with the primary goal in machine learning and artificial intelligence, which is to dynamically and automatically decompose problems into simpler problems to facilitate their solution. This book is a valuable resource for theorists and genetic algorithm researchers.

The Simple Genetic Algorithm

The Simple Genetic Algorithm PDF Author: Michael D. Vose
Publisher: MIT Press
ISBN: 9780262220583
Category : Computers
Languages : en
Pages : 650

Get Book Here

Book Description
Content Description #"A Bradford book."#Includes bibliographical references (p.) and index.