Author: William K. Blake
Publisher: Elsevier
ISBN: 0323149618
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
Mechanics of Flow-Induced Sound and Vibration: Volume 1 discusses a broad selection of flow sources that are widely encountered in many applications of subsonic flow engineering and provides combined physical and mathematical analyses of each of these sources. It classifies each of the leading sources of vibration and sound induced by various types of fluid motion and unifies the disciplines essential to describing each source. The book considers sources such as jet noise, flow-induced tones and self-excited vibration, dipole sound from rigid and flexible acoustically compact surfaces, random vibration of flow-excited plates and cylindrical shells, cavitation noise, acoustic transmission characteristics and sound radiation from bubbly liquids, splash noise, throttling and ventilation system noises, lifting surface flow noise and vibration, and tonal and broadband sounds from rotating machinery. It also integrates the fundamentals of the subject with the many practicalities of the design of quiet vibration-free machinery. This book caters to advanced students well-versed in applied mathematics, fluid mechanics, and vibrations, strength of materials, acoustics, and statistical methods.
Mechanics of Flow-Induced Sound and Vibration V1
Author: William K. Blake
Publisher: Elsevier
ISBN: 0323149618
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
Mechanics of Flow-Induced Sound and Vibration: Volume 1 discusses a broad selection of flow sources that are widely encountered in many applications of subsonic flow engineering and provides combined physical and mathematical analyses of each of these sources. It classifies each of the leading sources of vibration and sound induced by various types of fluid motion and unifies the disciplines essential to describing each source. The book considers sources such as jet noise, flow-induced tones and self-excited vibration, dipole sound from rigid and flexible acoustically compact surfaces, random vibration of flow-excited plates and cylindrical shells, cavitation noise, acoustic transmission characteristics and sound radiation from bubbly liquids, splash noise, throttling and ventilation system noises, lifting surface flow noise and vibration, and tonal and broadband sounds from rotating machinery. It also integrates the fundamentals of the subject with the many practicalities of the design of quiet vibration-free machinery. This book caters to advanced students well-versed in applied mathematics, fluid mechanics, and vibrations, strength of materials, acoustics, and statistical methods.
Publisher: Elsevier
ISBN: 0323149618
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
Mechanics of Flow-Induced Sound and Vibration: Volume 1 discusses a broad selection of flow sources that are widely encountered in many applications of subsonic flow engineering and provides combined physical and mathematical analyses of each of these sources. It classifies each of the leading sources of vibration and sound induced by various types of fluid motion and unifies the disciplines essential to describing each source. The book considers sources such as jet noise, flow-induced tones and self-excited vibration, dipole sound from rigid and flexible acoustically compact surfaces, random vibration of flow-excited plates and cylindrical shells, cavitation noise, acoustic transmission characteristics and sound radiation from bubbly liquids, splash noise, throttling and ventilation system noises, lifting surface flow noise and vibration, and tonal and broadband sounds from rotating machinery. It also integrates the fundamentals of the subject with the many practicalities of the design of quiet vibration-free machinery. This book caters to advanced students well-versed in applied mathematics, fluid mechanics, and vibrations, strength of materials, acoustics, and statistical methods.
Mechanics of Flow-Induced Sound and Vibration, Volume 1
Author: William K. Blake
Publisher: Academic Press
ISBN: 0128122897
Category : Science
Languages : en
Pages : 504
Book Description
Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting with classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including jet noise, flow tones, dipole sound from cylinders, and cavitation noise. Step-by-step derivations clearly identify any assumptions made throughout. Each chapter is illustrated with comparisons of leading formulas and measured data. Along with its companion, Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be essential reading for postgraduate students, and for engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation. Presents every important topic in flow-induced sound and vibration Covers all aspects of the topics addressed, from fundamental theory, to the analytical formulas used in practice Provides the building blocks of computer modeling for flow-induced sound and vibration
Publisher: Academic Press
ISBN: 0128122897
Category : Science
Languages : en
Pages : 504
Book Description
Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting with classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including jet noise, flow tones, dipole sound from cylinders, and cavitation noise. Step-by-step derivations clearly identify any assumptions made throughout. Each chapter is illustrated with comparisons of leading formulas and measured data. Along with its companion, Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be essential reading for postgraduate students, and for engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation. Presents every important topic in flow-induced sound and vibration Covers all aspects of the topics addressed, from fundamental theory, to the analytical formulas used in practice Provides the building blocks of computer modeling for flow-induced sound and vibration
Suppression of Aerodynamically Induced Cavity Pressure Oscillations
Author: Leonard L. Shaw
Publisher:
ISBN:
Category : Oscillations
Languages : en
Pages : 68
Book Description
A flight test program was performed to gain further insight into the phenomenon of flow-induced cavity pressure oscillations and to evaluate the effectiveness of suppression concepts in eliminating or reducing the pressure oscillations. The cavities tested were rectangular with approximate dimensions of 17 inches long, 8.5 inches deep, and 8.75 inches wide and were instrumented with microphones, static pressure ports, and a thermocouple. The flight speeds ranged from Mach number 0.6 to 1.3 at pressure altitudes of 3,000, 20,000, and 30,000 feet. The suppression devices included leading edge spoilers and deflectors and trailing edge ramps and deflectors. Several combinations of these were tested. The results indicate that the flow-induced pressure oscillations in a cavity of the dimensions tested and for the speed range tested can be significantly reduced with leading edge spoilers in conjunction with a trailing edge ramp. Reductions as large as 30 dB were achieved for the predominant model frequency for a one-third octave band. Other combinations of the suppression devices afforded some reduction, but the spoiler ramp combination proved most effective. (Author).
Publisher:
ISBN:
Category : Oscillations
Languages : en
Pages : 68
Book Description
A flight test program was performed to gain further insight into the phenomenon of flow-induced cavity pressure oscillations and to evaluate the effectiveness of suppression concepts in eliminating or reducing the pressure oscillations. The cavities tested were rectangular with approximate dimensions of 17 inches long, 8.5 inches deep, and 8.75 inches wide and were instrumented with microphones, static pressure ports, and a thermocouple. The flight speeds ranged from Mach number 0.6 to 1.3 at pressure altitudes of 3,000, 20,000, and 30,000 feet. The suppression devices included leading edge spoilers and deflectors and trailing edge ramps and deflectors. Several combinations of these were tested. The results indicate that the flow-induced pressure oscillations in a cavity of the dimensions tested and for the speed range tested can be significantly reduced with leading edge spoilers in conjunction with a trailing edge ramp. Reductions as large as 30 dB were achieved for the predominant model frequency for a one-third octave band. Other combinations of the suppression devices afforded some reduction, but the spoiler ramp combination proved most effective. (Author).
Engineering Model of Unsteady Flow in a Cavity
Author: R. C. Bauer
Publisher:
ISBN:
Category : Aeroacoustics
Languages : en
Pages : 90
Book Description
A mathematical model was assembled from fundamental fluid dynamic relations and turbulent single-stream mixing zone relations to predict spectra, i.e., the frequency and amplitude, of unsteady pressures acting in a rectangular cavity exposed to an external flow parallel to the cavity opening. Characteristics of the approaching boundary layer are expected as inputs, thereby allowing computation of spectra for cases of mass-injection upstream of the cavity. The equations were compiled as a code (CAP) that can be run in less than 15 sec on a personal computer. Maximum dynamic loads acting on the contents of the cavity can be estimated, in addition to the primary frequencies of oscillation.
Publisher:
ISBN:
Category : Aeroacoustics
Languages : en
Pages : 90
Book Description
A mathematical model was assembled from fundamental fluid dynamic relations and turbulent single-stream mixing zone relations to predict spectra, i.e., the frequency and amplitude, of unsteady pressures acting in a rectangular cavity exposed to an external flow parallel to the cavity opening. Characteristics of the approaching boundary layer are expected as inputs, thereby allowing computation of spectra for cases of mass-injection upstream of the cavity. The equations were compiled as a code (CAP) that can be run in less than 15 sec on a personal computer. Maximum dynamic loads acting on the contents of the cavity can be estimated, in addition to the primary frequencies of oscillation.
Characterization of Cavity Flow Fields Using Pressure Data Obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel
Author: Maureen B. Tracy
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 40
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 40
Book Description
Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds
Author: Maureen B. Tracy
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 84
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 84
Book Description
Experimental and Theoretical Study of Cavity Acoustics
Author: R. E. Dix
Publisher:
ISBN:
Category : Aeroacoustics
Languages : en
Pages : 224
Book Description
Between 1986 and 1990, a large database was compiled at AEDC from the results of a series of wind tunnel experiments investigating the aerodynamics of flow over open cavities. The database, known as the Weapons Internal Carriage and Separation (WICS) database, covered four experiments that were completed in the AEDC wind tunnels. The initial database documentation focused on the test and data, but included very little analysis of the results. The purpose of the present work is to report analysis of the cavity acoustics and trajectory data. In addition, an updated engineering mathematical model for cavity aeroacoustics is presented.
Publisher:
ISBN:
Category : Aeroacoustics
Languages : en
Pages : 224
Book Description
Between 1986 and 1990, a large database was compiled at AEDC from the results of a series of wind tunnel experiments investigating the aerodynamics of flow over open cavities. The database, known as the Weapons Internal Carriage and Separation (WICS) database, covered four experiments that were completed in the AEDC wind tunnels. The initial database documentation focused on the test and data, but included very little analysis of the results. The purpose of the present work is to report analysis of the cavity acoustics and trajectory data. In addition, an updated engineering mathematical model for cavity aeroacoustics is presented.
Prediction of the Pressure Oscillations in Cavities Exposed to Aerodynamic Flow
Author: Debra L. Smith
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 180
Book Description
The Shock and Vibration Bulletin
Author:
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 232
Book Description
Flow-Induced Vibration
Author: S. Ziada
Publisher: CRC Press
ISBN: 1482283743
Category : Science
Languages : en
Pages : 863
Book Description
Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The cont
Publisher: CRC Press
ISBN: 1482283743
Category : Science
Languages : en
Pages : 863
Book Description
Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The cont