Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media

Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media PDF Author: Duncan Paterson
Publisher: Springer
ISBN: 3030117871
Category : Science
Languages : en
Pages : 186

Get Book Here

Book Description
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.

Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media

Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media PDF Author: Duncan Paterson
Publisher: Springer
ISBN: 3030117871
Category : Science
Languages : en
Pages : 186

Get Book Here

Book Description
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.

Compositional Space Parameterization Methods for Thermal-compositional Simulation

Compositional Space Parameterization Methods for Thermal-compositional Simulation PDF Author: Rustem Zaydullin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Compositional simulation is necessary for the modeling of complex Enhanced Oil Recovery processes (EOR), such as gas and steam injection. Accurate simulation of these EOR processes involves coupling the nonlinear conservation laws for multicomponent, multiphase flow and transport with the equations that describes the phase behavior of the mixture at thermodynamic equilibrium. Phase-behavior modeling requires extensive computations and consumes significant time. The computational cost associated with the phase-behavior calculations increases significantly for systems where three or more fluid phases coexist at equilibrium. We present a family of methods for the computation of the thermodynamic phase-behavior associated with multicomponent, multiphase flow in porous media. These methods are based on concepts developed in the analytical theory of one-dimensional gas-injection processes. For two-phase compositional simulation, we present a Compositional Space Parameterization (CSP) framework, in which the thermodynamic phase-behavior is reformulated in the tie-simplex space as a function of composition, pressure, and phase fractions. This tie-simplex space is then used to specify the base nonlinear variables for fully-implicit compositional simulation. The tie-simplex space is discretized, and multilinear interpolation of the thermodynamic relations is employed. Thus, all the thermodynamic properties become piece-wise linear functions in the tie-simplex space. The computation of the phase behavior in the course of a compositional simulation then becomes an iteration-free procedure and does not require any Equation of State (EoS) computations (flash computations or phase-stability tests). We demonstrate that the proposed CSP method reduces the computational cost of the thermodynamic calculations significantly compared with standard EoS-based approaches. Moreover, the proposed framework is promising not only for acceleration of phase-behavior computations, but more importantly as a new thermodynamically consistent approximation for general-purpose compositional simulation. Next, for the general case of multiphase (three, and more phases) simulation, we study the importance of using EoS-based modeling for thermal reservoir simulation. Here, the EoS-based approach is compared with the industry standard K-values method. The analysis employs simple one-dimensional thermal displacements of heavy oil by a mixture of steam and solvent. This analysis shows that three-phase EoS-based computations may be necessary for accurate modeling of certain types of thermal EOR processes. Finally, we develop an extension of the CSP framework for multicomponent, multiphase thermal-compositional simulation. In particular, we present a strategy for phase-state identification that can be used to bypass the need for full three-phase EoS computations. The method uses information from the parameterized extensions of the `key' tie-simplexes and is based on the adaptive discretization of the extensions of these tie-simplexes. We demonstrate the efficiency and robustness of the developed bypass strategy for the simulation of flow and transport in thermal, three-phase compositional models of heterogeneous reservoirs.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 9780898718942
Category : Finite element method
Languages : en
Pages : 556

Get Book Here

Book Description
Computational Methods for Multiphase Flows in Porous Media offers a fundamental and practical introduction to the use of computational methods, particularly finite element methods, in the simulation of fluid flows in porous media. It is the first book to cover a wide variety of flows, including single-phase, two-phase, black oil, volatile, compositional, nonisothermal, and chemical compositional flows in both ordinary porous and fractured porous media. In addition, a range of computational methods are used, and benchmark problems of nine comparative solution projects organized by the Society of Petroleum Engineers are presented for the first time in book form. The book reviews multiphase flow equations and computational methods to introduce basic terminologies and notation. A thorough discussion of practical aspects of the subjects is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Audience: this book can be used as a textbook for graduate or advanced undergraduate students in geology, petroleum engineering, and applied mathematics; as a reference book for professionals in these fields, as well as scientists working in the area of petroleum reservoir simulation; as a handbook for employees in the oil industry who need a basic understanding of modeling and computational method concepts; and by researchers in hydrology, environmental remediation, and some areas of biological tissue modeling. Calculus, physics, and some acquaintance with partial differential equations and simple matrix algebra are necessary prerequisites.

Simulation of Flow in Porous Media

Simulation of Flow in Porous Media PDF Author: Peter Bastian
Publisher: Walter de Gruyter
ISBN: 3110282240
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.

An Experimental, Numerical, and CFD Investigation Into the Heat Transfer and Flow Characteristics in Porous Media Using a Thermal Non-Equilibrium Model

An Experimental, Numerical, and CFD Investigation Into the Heat Transfer and Flow Characteristics in Porous Media Using a Thermal Non-Equilibrium Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
Heat transfer and fluid flow through porous media was investigated using numerical simulations and experiment. For the numerical simulations, two models were created. The first consisted of a two-dimensional numerical model created in MathCAD and was solved using the finite difference approach. The MathCAD model's flow in the porous media was described by the Brinkman-Forchheimer-extended Darcy equation. The second model consisted of a computational fluid dynamics (CFD) porous media model using Fluent and was solved using the finite volume approach. Both models assumed constant fluid phase and properties. Pore diameters were held constant for each simulation; two different porosities were investigated. Boundary conditions were applied at the wall in which the temperatures of the fluid and the porous media were determined by coupled energy equations. The effects of the boundary condition, the Reynolds number, porosity, and heat input were examined.

Thermal Flows in Porous Media

Thermal Flows in Porous Media PDF Author: H.I. Ene
Publisher: Springer
ISBN: 9789027722256
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Thermal flow in porous media is important in a wide range of areas, including oil recovery, geothermal development, the chemical and nuclear industries, civil engineering, energy storage and energy conversion. This monograph uses a systematic, rigorous and unified treatment to provide a general understanding of the phenomena involved. General equations for single- or multiphase flow (including an arbitrary number of components inside each phase), diffusion and chemical reactions are presented. The boundary conditions which may be imposed, the non-dimensional parameters, the structure of the solutions, the stability of finite amplitude solutions and many other related topics are also studied. Although the treatment is basically mathematical, specific physical problems are also dealt with. There are two major fields of application: natural convection and underground combustion. Both are discussed in detail. Various examples with exact or numerical solutions in the case of bounded or unbounded domains are presented, accompanied by extensive comment.

SPE Journal

SPE Journal PDF Author:
Publisher:
ISBN:
Category : Petroleum engineering
Languages : en
Pages : 448

Get Book Here

Book Description


 PDF Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1131

Get Book Here

Book Description


Multiphase Equilibria of Complex Reservoir Fluids

Multiphase Equilibria of Complex Reservoir Fluids PDF Author: Huazhou Li
Publisher: Springer Nature
ISBN: 3030874400
Category : Technology & Engineering
Languages : en
Pages : 220

Get Book Here

Book Description
This short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations. This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.

Computational Fluid Flow and Heat Transfer

Computational Fluid Flow and Heat Transfer PDF Author: Mukesh Kumar Awasthi
Publisher:
ISBN: 9781032603186
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The text provides insight into the different mathematical tools and techniques that can be applied to the analysis and numerical computations of flow models. It further discusses important topics such as the heat transfer effect on boundary layer flow, modeling of flows through porous media, anisotropic polytrophic gas model, and thermal instability in viscoelastic fluids. This book: Discusses modeling of Rayleigh-Taylor instability in nanofluid layer and thermal instability in viscoelastic fluids. Covers open FOAM simulation of free surface problems, and anisotropic polytrophic gas model. Highlights the Sensitivity Analysis in Aerospace Engineering, MHD Flow of a Micropolar Hybrid Nanofluid, and IoT-Enabled Monitoring for Natural Convection. Presents thermal behavior of nanofluid in complex geometries and heat transfer effect on Boundary layer flow. Explains natural convection heat transfer in non-Newtonian fluids and homotropy series solution of the boundary layer flow. Illustrates modeling of flows through porous media and investigates Shock-driven Richtmyer-Meshkov instability. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of Applied Sciences, Mechanical Engineering, Manufacturing Engineering, Production Engineering, Industrial engineering, Automotive engineering, and Aerospace engineering.