First Order Mathematical Logic

First Order Mathematical Logic PDF Author: Angelo Margaris
Publisher: Courier Corporation
ISBN: 9780486662695
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews

First Order Mathematical Logic

First Order Mathematical Logic PDF Author: Angelo Margaris
Publisher: Courier Corporation
ISBN: 9780486662695
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews

First-Order Logic

First-Order Logic PDF Author: Raymond R. Smullyan
Publisher: Springer Science & Business Media
ISBN: 3642867189
Category : Mathematics
Languages : en
Pages : 167

Get Book Here

Book Description
Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).

Mathematical Logic

Mathematical Logic PDF Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

An Introduction to Mathematical Logic

An Introduction to Mathematical Logic PDF Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Extensions of First-Order Logic

Extensions of First-Order Logic PDF Author: Maria Manzano
Publisher: Cambridge University Press
ISBN: 9780521354356
Category : Computers
Languages : en
Pages : 414

Get Book Here

Book Description
An introduction to many-sorted logic as an extension of first-order logic.

The Foundations of Mathematics

The Foundations of Mathematics PDF Author: Kenneth Kunen
Publisher:
ISBN: 9781904987147
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

An Introduction to Mathematical Logic and Type Theory

An Introduction to Mathematical Logic and Type Theory PDF Author: Peter B. Andrews
Publisher: Springer Science & Business Media
ISBN: 9401599343
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Mathematical Logic

Mathematical Logic PDF Author: Ian Chiswell
Publisher: OUP Oxford
ISBN: 0191524808
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.

Mathematical Logic for Computer Science

Mathematical Logic for Computer Science PDF Author: Mordechai Ben-Ari
Publisher: Springer Science & Business Media
ISBN: 1447103351
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.

Mathematical Logic

Mathematical Logic PDF Author: Joseph R. Shoenfield
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.