Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics PDF Author: Howard C. Elman
Publisher: OUP Oxford
ISBN: 019152378X
Category : Computers
Languages : en
Pages : 416

Get Book Here

Book Description
The authors' intended audience is at the level of graduate students and researchers, and we believe that the text offers a valuable contribution to all finite element researchers who would like to broadened both their fundamental and applied knowledge of the field. - Spencer J. Sherwin and Robert M. Kirby, Fluid Mechanics, Vol 557, 2006.

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics PDF Author: Howard C. Elman
Publisher: OUP Oxford
ISBN: 019152378X
Category : Computers
Languages : en
Pages : 416

Get Book Here

Book Description
The authors' intended audience is at the level of graduate students and researchers, and we believe that the text offers a valuable contribution to all finite element researchers who would like to broadened both their fundamental and applied knowledge of the field. - Spencer J. Sherwin and Robert M. Kirby, Fluid Mechanics, Vol 557, 2006.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers PDF Author: Howard Elman
Publisher: OUP Oxford
ISBN: 0191667919
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Principles of Computational Fluid Dynamics

Principles of Computational Fluid Dynamics PDF Author: Pieter Wesseling
Publisher: Springer Science & Business Media
ISBN: 3642051456
Category : Mathematics
Languages : en
Pages : 651

Get Book Here

Book Description
This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers PDF Author: Howard Elman
Publisher: OUP Oxford
ISBN: 0191667927
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Numerical Methods for Two-phase Incompressible Flows

Numerical Methods for Two-phase Incompressible Flows PDF Author: Sven Gross
Publisher: Springer Science & Business Media
ISBN: 3642196861
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403

Get Book Here

Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Computational Fluid Dynamics

Computational Fluid Dynamics PDF Author: Jiri Blazek
Publisher: Elsevier
ISBN: 0080529674
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.

Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF Author: Joel H Ferziger
Publisher:
ISBN: 9783642976520
Category :
Languages : en
Pages : 380

Get Book Here

Book Description


The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics PDF Author: F. Moukalled
Publisher: Springer
ISBN: 3319168746
Category : Technology & Engineering
Languages : en
Pages : 799

Get Book Here

Book Description
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations PDF Author: Charles R. Doering
Publisher: Cambridge University Press
ISBN: 9780521445689
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.