Fine-pitch Cu-snag Die-to-die and Die-to-interposer Interconnections Using Advanced Slid Bonding

Fine-pitch Cu-snag Die-to-die and Die-to-interposer Interconnections Using Advanced Slid Bonding PDF Author: Chinmay Honrao
Publisher:
ISBN:
Category : Diffusion
Languages : en
Pages :

Get Book Here

Book Description
Multi-chip integration with emerging technologies such as a 3D IC stack or 2.5D interposer is primarily enabled by the off-chip interconnections. The I/O density, speed and bandwidth requirements for emerging mobile and high-performance systems are projected to drive the interconnection pitch to less than 20 microns by 2015. A new class of low-temperature, low-pressure, high-throughput, cost-effective and maufacturable technologies are needed to enable such fine-pitch interconnections. A range of interconnection technologies are being pursued to achieve these fine-pitch interconnections, most notably direct Cu-Cu interconnections and copper pillars with solder caps. Direct Cu-Cu bonding has been a target in the semiconductor industry due to the high electrical and thermal conductivity of copper, its high current-carrying capability and compatibility with CMOS BEOL processes. However, stringent coplanarity requirements and high temperature and high pressure bonding needed for assembly have been the major barriers for this technology. Copper-solder interconnection technology has therefore become the main workhouse for off-chip interconnections, and has recently been demonstrated at pitches as low as 40 microns. However, the current interconnection approaches using copper-solder structures are not scalable to finer feature sizes due to electromigration, and reliability issues arising with decreased solder content. Solid Liquid Inter-Diffusion (SLID) bonding is a promising solution to achieve ultra-fine-pitch and ultra-short interconnections with a copper-solder system, as it relies on the conversion of the entire solder volume into thermally-stable and highly electromigration-resistant intermetallics with no residual solder. Such a complete conversion of solders to stable intermetallics, however, relies on a long assembly time or a subsequent post-annealing process. To achieve pitches lower than 30 micron pitch, this research aims to study two ultra-short copper-solder interconnection approaches: (i) copper pillar and solder cap technology, and (ii) a novel technology which will enable interconnections with improved electrical performance by fast and complete conversion of solders to stable intermetallics (IMCs) using Solid Liquid Diffusion (SLID) bonding approach. SLID bonding, being a liquid state diffusion process, combined with a novel, alternate layered copper-solder bump structure, leads to higher diffusion rates and a much faster conversion of solder to IMCs. Moreover this assembly bonding is done at a much lower temperature and pressure as compared to that used for Cu-Cu interconnections. FEM was used to study the effect of various assembly and bump-design characteristics on the post-assembly stress distribution in the ultra-short copper-solder joints, and design guidelines were evolved based on these results. Test vehicles, based on these guidelines, were designed and fabricated at 50 and 100 micron pitch for experimental analysis. The bumping process was optimized, and the effect of current density on the solder composition, bump-height non-uniformity and surface morphology of the deposited solder were studied. Ultra-short interconnections formed using the copper pillar and solder cap technology were characterized. A novel multi-layered copper-solder stack was designed based on diffusion modeling to optimize the bump stack configuration for high-throughput conversion to stable Cu3Sn intermetallic. Following this modeling, a novel bumping process with alternating copper and tin plating layers to predesigned thicknesses was then developed to fabricate the interconnection structure. Alternate layers of copper and tin were electroplated on a blanket wafer, as a first demonstration of this stack-technology. Dies with copper-solder test structures were bonded using SLID bonding to validate the formation of stable intermetallics.

Fine-pitch Cu-snag Die-to-die and Die-to-interposer Interconnections Using Advanced Slid Bonding

Fine-pitch Cu-snag Die-to-die and Die-to-interposer Interconnections Using Advanced Slid Bonding PDF Author: Chinmay Honrao
Publisher:
ISBN:
Category : Diffusion
Languages : en
Pages :

Get Book Here

Book Description
Multi-chip integration with emerging technologies such as a 3D IC stack or 2.5D interposer is primarily enabled by the off-chip interconnections. The I/O density, speed and bandwidth requirements for emerging mobile and high-performance systems are projected to drive the interconnection pitch to less than 20 microns by 2015. A new class of low-temperature, low-pressure, high-throughput, cost-effective and maufacturable technologies are needed to enable such fine-pitch interconnections. A range of interconnection technologies are being pursued to achieve these fine-pitch interconnections, most notably direct Cu-Cu interconnections and copper pillars with solder caps. Direct Cu-Cu bonding has been a target in the semiconductor industry due to the high electrical and thermal conductivity of copper, its high current-carrying capability and compatibility with CMOS BEOL processes. However, stringent coplanarity requirements and high temperature and high pressure bonding needed for assembly have been the major barriers for this technology. Copper-solder interconnection technology has therefore become the main workhouse for off-chip interconnections, and has recently been demonstrated at pitches as low as 40 microns. However, the current interconnection approaches using copper-solder structures are not scalable to finer feature sizes due to electromigration, and reliability issues arising with decreased solder content. Solid Liquid Inter-Diffusion (SLID) bonding is a promising solution to achieve ultra-fine-pitch and ultra-short interconnections with a copper-solder system, as it relies on the conversion of the entire solder volume into thermally-stable and highly electromigration-resistant intermetallics with no residual solder. Such a complete conversion of solders to stable intermetallics, however, relies on a long assembly time or a subsequent post-annealing process. To achieve pitches lower than 30 micron pitch, this research aims to study two ultra-short copper-solder interconnection approaches: (i) copper pillar and solder cap technology, and (ii) a novel technology which will enable interconnections with improved electrical performance by fast and complete conversion of solders to stable intermetallics (IMCs) using Solid Liquid Diffusion (SLID) bonding approach. SLID bonding, being a liquid state diffusion process, combined with a novel, alternate layered copper-solder bump structure, leads to higher diffusion rates and a much faster conversion of solder to IMCs. Moreover this assembly bonding is done at a much lower temperature and pressure as compared to that used for Cu-Cu interconnections. FEM was used to study the effect of various assembly and bump-design characteristics on the post-assembly stress distribution in the ultra-short copper-solder joints, and design guidelines were evolved based on these results. Test vehicles, based on these guidelines, were designed and fabricated at 50 and 100 micron pitch for experimental analysis. The bumping process was optimized, and the effect of current density on the solder composition, bump-height non-uniformity and surface morphology of the deposited solder were studied. Ultra-short interconnections formed using the copper pillar and solder cap technology were characterized. A novel multi-layered copper-solder stack was designed based on diffusion modeling to optimize the bump stack configuration for high-throughput conversion to stable Cu3Sn intermetallic. Following this modeling, a novel bumping process with alternating copper and tin plating layers to predesigned thicknesses was then developed to fabricate the interconnection structure. Alternate layers of copper and tin were electroplated on a blanket wafer, as a first demonstration of this stack-technology. Dies with copper-solder test structures were bonded using SLID bonding to validate the formation of stable intermetallics.

Advanced Wirebond Interconnection Technology

Advanced Wirebond Interconnection Technology PDF Author: Shankara K. Prasad
Publisher: Springer Science & Business Media
ISBN: 1402077637
Category : Technology & Engineering
Languages : en
Pages : 694

Get Book Here

Book Description
From the reviews: "This book is intended for an assembly production house setting, appropriate for management, designers, chief operators, as well as wirebond production engineers. Operational issues such as specifying and optimizing wire and automatic bonders for a product line are included. The book is very good with "visual" explanations for quick grasping of the issues. In addition, the fundamental metallurgical or mechanical root causes behind material and process choices are presented. The book has a clear prose style and a very readable font and page layout. The figures, although effective, are simply low resolution screen prints from a personal computer and thus have aliasing and fuzziness. This book has excellent overall tutorial and enough description of wire and bonding equipment so the reader could specify and negotiate correctly for with suppliers. The majority of the book dwells on establishing the bonding process for a particular product; determining the "window" of adjustments. The book ends with discussions on establishing quality metrics and reliability assurance tests. Each chapter of the book includes enough tutorial information to allow it to alone with little need to page backwards. A short but good reference section is at the end. If you have not read a wirebonding book, or the one you read 10 years ago was borrowed and never returned, now is the time to buy this book." ( CMPT Newsletter, June 2005)

Heterogeneous Integrations

Heterogeneous Integrations PDF Author: John H. Lau
Publisher: Springer
ISBN: 9811372241
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book Here

Book Description
Heterogeneous integration uses packaging technology to integrate dissimilar chips, LED, MEMS, VCSEL, etc. from different fabless houses and with different functions and wafer sizes into a single system or subsystem. How are these dissimilar chips and optical components supposed to talk to each other? The answer is redistribution layers (RDLs). This book addresses the fabrication of RDLs for heterogeneous integrations, and especially focuses on RDLs on: A) organic substrates, B) silicon substrates (through-silicon via (TSV)-interposers), C) silicon substrates (bridges), D) fan-out substrates, and E) ASIC, memory, LED, MEMS, and VCSEL systems. The book offers a valuable asset for researchers, engineers, and graduate students in the fields of semiconductor packaging, materials sciences, mechanical engineering, electronic engineering, telecommunications, networking, etc.

Electrical Conductive Adhesives with Nanotechnologies

Electrical Conductive Adhesives with Nanotechnologies PDF Author: Yi (Grace) Li
Publisher: Springer Science & Business Media
ISBN: 0387887830
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
“Electrical Conductive Adhesives with Nanotechnologies” begins with an overview of electronic packaging and discusses the various adhesives options currently available, including lead-free solder and ECAs (Electrically Conductive Adhesives). The material presented focuses on the three ECA categories specifically, Isotropically Conductive Adhesives (ICAs) Anisotropically Conductive Adhesives/Films (ACA/ACF) and Nonconductive Adhesives/Films (NCA/NCF). Discussing the advantages and limitations of each technique, and how each technique is currently applied. Lastly, a detailed presentation of how nano techniques can be applied to conductive adhesives is discussed, including recent research and development of nano component adhesives/nano component films, their electrical properties, thermal performance, bonding pressure and assembly and reliability.

Semiconductor Advanced Packaging

Semiconductor Advanced Packaging PDF Author: John H. Lau
Publisher: Springer Nature
ISBN: 9811613761
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
The book focuses on the design, materials, process, fabrication, and reliability of advanced semiconductor packaging components and systems. Both principles and engineering practice have been addressed, with more weight placed on engineering practice. This is achieved by providing in-depth study on a number of major topics such as system-in-package, fan-in wafer/panel-level chip-scale packages, fan-out wafer/panel-level packaging, 2D, 2.1D, 2.3D, 2.5D, and 3D IC integration, chiplets packaging, chip-to-wafer bonding, wafer-to-wafer bonding, hybrid bonding, and dielectric materials for high speed and frequency. The book can benefit researchers, engineers, and graduate students in fields of electrical engineering, mechanical engineering, materials sciences, and industry engineering, etc.

Materials for Advanced Packaging

Materials for Advanced Packaging PDF Author: Daniel Lu
Publisher: Springer
ISBN: 3319450980
Category : Technology & Engineering
Languages : en
Pages : 974

Get Book Here

Book Description
Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

3D Microelectronic Packaging

3D Microelectronic Packaging PDF Author: Yan Li
Publisher: Springer
ISBN: 9783319445847
Category : Technology & Engineering
Languages : en
Pages : 560

Get Book Here

Book Description
This volume provides a comprehensive reference for graduate students and professionals in both academia and industry on the fundamentals, processing details, and applications of 3D microelectronic packaging, an industry trend for future microelectronic packages. Chapters written by experts cover the most recent research results and industry progress in the following areas: TSV, die processing, micro bumps, direct bonding, thermal compression bonding, advanced materials, heat dissipation, thermal management, thermal mechanical modeling, quality, reliability, fault isolation, and failure analysis of 3D microelectronic packages. Numerous images, tables, and didactic schematics are included throughout. This essential volume equips readers with an in-depth understanding of all aspects of 3D packaging, including packaging architecture, processing, thermal mechanical and moisture related reliability concerns, common failures, developing areas, and future challenges, providing insights into key areas for future research and development.

Advanced Flip Chip Packaging

Advanced Flip Chip Packaging PDF Author: Ho-Ming Tong
Publisher: Springer Science & Business Media
ISBN: 1441957685
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable.

Reflow Soldering Processes

Reflow Soldering Processes PDF Author: Ning-Cheng Lee
Publisher: Newnes
ISBN: 0750672188
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
Focused on technological innovations in the field of electronics packaging and production, this book elucidates the changes in reflow soldering processes, its impact on defect mechanisms, and, accordingly, the troubleshooting techniques during these processes in a variety of board types. Geared toward electronics manufacturing process engineers, design engineers, as well as students in process engineering classes, Reflow Soldering Processes and Troubleshooting will be a strong contender in the continuing skill development market for manufacturing personnel. Written using a very practical, hands-on approach, Reflow Soldering Processes and Troubleshooting provides the means for engineers to increase their understanding of the principles of soldering, flux, and solder paste technology. The author facilitates learning about other essential topics, such as area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and rework process,--and provides an increased understanding of the reliability failure modes of soldered SMT components. With cost effectiveness foremost in mind, this book is designed to troubleshoot errors or problems before boards go into the manufacturing process, saving time and money on the front end. The author's vast expertise and knowledge ensure that coverage of topics is expertly researched, written, and organized to best meet the needs of manufacturing process engineers, students, practitioners, and anyone with a desire to learn more about reflow soldering processes. Comprehensive and indispensable, this book will prove a perfect training and reference tool that readers will find invaluable. Provides engineers the cutting-edge technology in a rapidly changing field Offers in-depth coverage of the principles of soldering, flux, solder paste technology, area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and the rework process

Fundamentals of Lead-Free Solder Interconnect Technology

Fundamentals of Lead-Free Solder Interconnect Technology PDF Author: Tae-Kyu Lee
Publisher: Springer
ISBN: 1461492661
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
This unique book provides an up-to-date overview of the concepts behind lead-free soldering techniques. Readers will find a description of the physical and mechanical properties of lead-free solders, in addition to lead-free electronics and solder alloys. Additional topics covered include the reliability of lead-free soldering, tin whiskering and electromigration, in addition to emerging technologies and research.