Author: Andrea Carpinteri
Publisher: Elsevier
ISBN: 0080527817
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The European Structural Integrity Society (ESIS) Technical Commitee on Fatigue of Engineering Materials and Structures (TC3) decided to compile a Special Technical Publication (ESIS STP) based on the 115 papers presented at the 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture. The 25 papers included in the STP have been extended and revised by the authors. The conference was held in Lisbon, Portugal, on 25-28 June 2001, and was chaired by Manual De Freitas, Instituto Superior Tecnico, Lisbon. The meeting, organised by the Instituto Superior Tecnico and sponsored by the Portuguese Minesterio da Cienca e da Tecnologia and by the European Structural Integrity Society, was attended by 151 delegates from 20 countries. The papers in the present book deal with the theoretical, numerical and experimental aspects of the Multiaxial fatigue and fracture of engineering materials and structures. They are divided in to the following six sections; Multiaxial Fatigue of Welded Structures; High cycle Multiaxial fatigue; Non proportional and Variable-Amplitude loading; Defects, Notches, Crack Growth; Low Cycle Multiaxial Fatigue; Applications and Testing Methods. As is well-known, most engineering components and structures in the mechanical, aerospace, power generation, and other industries are subjected to multiaxial loading during their service life. One of the most difficult tasks in design against fatigue and fracture is to translate the information gathered from uniaxial fatigue and fracture tests on engineering materials into applications involving complex states of cyclic stress-strain conditions. This book is the result of co-operation between many researchers from different laboratories, universities and industries in a number of countries.
Biaxial/Multiaxial Fatigue and Fracture
Author: Andrea Carpinteri
Publisher: Elsevier
ISBN: 0080527817
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The European Structural Integrity Society (ESIS) Technical Commitee on Fatigue of Engineering Materials and Structures (TC3) decided to compile a Special Technical Publication (ESIS STP) based on the 115 papers presented at the 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture. The 25 papers included in the STP have been extended and revised by the authors. The conference was held in Lisbon, Portugal, on 25-28 June 2001, and was chaired by Manual De Freitas, Instituto Superior Tecnico, Lisbon. The meeting, organised by the Instituto Superior Tecnico and sponsored by the Portuguese Minesterio da Cienca e da Tecnologia and by the European Structural Integrity Society, was attended by 151 delegates from 20 countries. The papers in the present book deal with the theoretical, numerical and experimental aspects of the Multiaxial fatigue and fracture of engineering materials and structures. They are divided in to the following six sections; Multiaxial Fatigue of Welded Structures; High cycle Multiaxial fatigue; Non proportional and Variable-Amplitude loading; Defects, Notches, Crack Growth; Low Cycle Multiaxial Fatigue; Applications and Testing Methods. As is well-known, most engineering components and structures in the mechanical, aerospace, power generation, and other industries are subjected to multiaxial loading during their service life. One of the most difficult tasks in design against fatigue and fracture is to translate the information gathered from uniaxial fatigue and fracture tests on engineering materials into applications involving complex states of cyclic stress-strain conditions. This book is the result of co-operation between many researchers from different laboratories, universities and industries in a number of countries.
Publisher: Elsevier
ISBN: 0080527817
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The European Structural Integrity Society (ESIS) Technical Commitee on Fatigue of Engineering Materials and Structures (TC3) decided to compile a Special Technical Publication (ESIS STP) based on the 115 papers presented at the 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture. The 25 papers included in the STP have been extended and revised by the authors. The conference was held in Lisbon, Portugal, on 25-28 June 2001, and was chaired by Manual De Freitas, Instituto Superior Tecnico, Lisbon. The meeting, organised by the Instituto Superior Tecnico and sponsored by the Portuguese Minesterio da Cienca e da Tecnologia and by the European Structural Integrity Society, was attended by 151 delegates from 20 countries. The papers in the present book deal with the theoretical, numerical and experimental aspects of the Multiaxial fatigue and fracture of engineering materials and structures. They are divided in to the following six sections; Multiaxial Fatigue of Welded Structures; High cycle Multiaxial fatigue; Non proportional and Variable-Amplitude loading; Defects, Notches, Crack Growth; Low Cycle Multiaxial Fatigue; Applications and Testing Methods. As is well-known, most engineering components and structures in the mechanical, aerospace, power generation, and other industries are subjected to multiaxial loading during their service life. One of the most difficult tasks in design against fatigue and fracture is to translate the information gathered from uniaxial fatigue and fracture tests on engineering materials into applications involving complex states of cyclic stress-strain conditions. This book is the result of co-operation between many researchers from different laboratories, universities and industries in a number of countries.
Multiaxial Fatigue and Fracture
Author: E. Macha
Publisher: Elsevier
ISBN: 008053712X
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This volume contains 18 papers selected from 90 presented at the Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture held in Cracow, Poland 8-12 September 1997. The papers in this book deal with theoretical, computational and experimental aspects of the multiaxial fatigue and fracture of engineering materials and structures. The papers are divided into the following four categories: 1. Proportional cyclic loading 2. Non-proportional cyclic loading 3. Variable amplitude and random loading 4. Crack growthMost papers in this publication talk about the behaviour of constructional materials and elements of machines under non-proportional loading and under variable amplitude and random loading, which are more realistic load histories met in industrial practice. Variable amplitude loading under cyclic load with basic frequency and random loading under load with a continuous band of frequency is classified here. This book gives a review of the latest world success and directions of investigations on multiaxial fatigue and fracture. More and more often publications are results of the co-operation of researchers from different laboratories and countries. Seven out of eighteen papers included here were worked out by international authors teams. This is a symptom of the times, when science and investigations know no borders.
Publisher: Elsevier
ISBN: 008053712X
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
This volume contains 18 papers selected from 90 presented at the Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture held in Cracow, Poland 8-12 September 1997. The papers in this book deal with theoretical, computational and experimental aspects of the multiaxial fatigue and fracture of engineering materials and structures. The papers are divided into the following four categories: 1. Proportional cyclic loading 2. Non-proportional cyclic loading 3. Variable amplitude and random loading 4. Crack growthMost papers in this publication talk about the behaviour of constructional materials and elements of machines under non-proportional loading and under variable amplitude and random loading, which are more realistic load histories met in industrial practice. Variable amplitude loading under cyclic load with basic frequency and random loading under load with a continuous band of frequency is classified here. This book gives a review of the latest world success and directions of investigations on multiaxial fatigue and fracture. More and more often publications are results of the co-operation of researchers from different laboratories and countries. Seven out of eighteen papers included here were worked out by international authors teams. This is a symptom of the times, when science and investigations know no borders.
Multiaxial Fatigue
Author: Darrell Socie
Publisher: SAE International
ISBN: 0768065100
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
This book provides practicing engineers, researchers, and students with a working knowledge of the fatigue design process and models under multiaxial states of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue.
Publisher: SAE International
ISBN: 0768065100
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
This book provides practicing engineers, researchers, and students with a working knowledge of the fatigue design process and models under multiaxial states of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue.
Multiaxial Fatigue and Deformation
Author: Sreeramesh Kalluri
Publisher: ASTM International
ISBN: 9780803128651
Category : Science
Languages : en
Pages : 466
Book Description
Contains papers from a May 1999 symposium, describing state-of-the-art multiaxial testing techniques and analytical methods for characterizing fatigue and deformation behaviors of engineering materials. Papers are classified into sections on multiaxial strength of materials, multiaxial deformation,
Publisher: ASTM International
ISBN: 9780803128651
Category : Science
Languages : en
Pages : 466
Book Description
Contains papers from a May 1999 symposium, describing state-of-the-art multiaxial testing techniques and analytical methods for characterizing fatigue and deformation behaviors of engineering materials. Papers are classified into sections on multiaxial strength of materials, multiaxial deformation,
Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture
Author: Ewald Macha
Publisher:
ISBN: 9788386708406
Category : Fracture mechanics
Languages : en
Pages : 672
Book Description
Publisher:
ISBN: 9788386708406
Category : Fracture mechanics
Languages : en
Pages : 672
Book Description
Multiaxial Notch Fracture and Fatigue
Author: Xiangqiao Yan
Publisher: CRC Press
ISBN: 1000830314
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents the unified fatigue life prediction equation for low/medium/high cycle fatigue of metallic materials relevant to plain materials and notched components. The unified fatigue life prediction equation is the Wöhler equation, in which the "stress-based intensity parameter" is calculated based on the linear-elastic analysis. A local approach for the static fracture analysis for notched components is presented based on the notch linear-elastic stress field. In the local approach, a stress intensity parameter is taken as a stress-based intensity parameter. Experimental verifications show that the local approach is also suited for the static fracture analysis for notched components made of ductile materials. The book is also concerned with a material failure problem under the multiaxial stress states. A concept of the material intensity parameter is introduced in this book. It is a material property parameter that depends on both Mode-I fracture toughness and Mode-II (or Mode-III) fracture toughness and the multiaxial parameter to characterize the variation of the material failure resistance (notch fracture toughness) with the multiaxial stresses states. The failure condition to assess mixed-mode fracture of notched (or cracked) components is stated as the stress-based intensity parameter being equal to the material intensity parameter. With respect to the traditional S-N equation, a similar S-N equation is presented and verified to have high accuracy. This book will be of interest to professionals in the field of fatigue and fracture for both brittle and ductile materials.
Publisher: CRC Press
ISBN: 1000830314
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents the unified fatigue life prediction equation for low/medium/high cycle fatigue of metallic materials relevant to plain materials and notched components. The unified fatigue life prediction equation is the Wöhler equation, in which the "stress-based intensity parameter" is calculated based on the linear-elastic analysis. A local approach for the static fracture analysis for notched components is presented based on the notch linear-elastic stress field. In the local approach, a stress intensity parameter is taken as a stress-based intensity parameter. Experimental verifications show that the local approach is also suited for the static fracture analysis for notched components made of ductile materials. The book is also concerned with a material failure problem under the multiaxial stress states. A concept of the material intensity parameter is introduced in this book. It is a material property parameter that depends on both Mode-I fracture toughness and Mode-II (or Mode-III) fracture toughness and the multiaxial parameter to characterize the variation of the material failure resistance (notch fracture toughness) with the multiaxial stresses states. The failure condition to assess mixed-mode fracture of notched (or cracked) components is stated as the stress-based intensity parameter being equal to the material intensity parameter. With respect to the traditional S-N equation, a similar S-N equation is presented and verified to have high accuracy. This book will be of interest to professionals in the field of fatigue and fracture for both brittle and ductile materials.
Metal Fatigue Analysis Handbook
Author: Yung-Li Lee
Publisher: Elsevier
ISBN: 0123852056
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
Understand why fatigue happens and how to model, simulate, design and test for it with this practical, industry-focused reference Written to bridge the technology gap between academia and industry, the Metal Fatigue Analysis Handbook presents state-of-the-art fatigue theories and technologies alongside more commonly used practices, with working examples included to provide an informative, practical, complete toolkit of fatigue analysis. Prepared by an expert team with extensive industrial, research and professorial experience, the book will help you to understand: - Critical factors that cause and affect fatigue in the materials and structures relating to your work - Load and stress analysis in addition to fatigue damage—the latter being the sole focus of many books on the topic - How to design with fatigue in mind to meet durability requirements - How to model, simulate and test with different materials in different fatigue scenarios - The importance and limitations of different models for cost effective and efficient testing Whilst the book focuses on theories commonly used in the automotive industry, it is also an ideal resource for engineers and analysts in other disciplines such as aerospace engineering, civil engineering, offshore engineering, and industrial engineering. - The only book on the market to address state-of-the-art technologies in load, stress and fatigue damage analyses and their application to engineering design for durability - Intended to bridge the technology gap between academia and industry - written by an expert team with extensive industrial, research and professorial experience in fatigue analysis and testing - An advanced mechanical engineering design handbook focused on the needs of professional engineers within automotive, aerospace and related industrial disciplines
Publisher: Elsevier
ISBN: 0123852056
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
Understand why fatigue happens and how to model, simulate, design and test for it with this practical, industry-focused reference Written to bridge the technology gap between academia and industry, the Metal Fatigue Analysis Handbook presents state-of-the-art fatigue theories and technologies alongside more commonly used practices, with working examples included to provide an informative, practical, complete toolkit of fatigue analysis. Prepared by an expert team with extensive industrial, research and professorial experience, the book will help you to understand: - Critical factors that cause and affect fatigue in the materials and structures relating to your work - Load and stress analysis in addition to fatigue damage—the latter being the sole focus of many books on the topic - How to design with fatigue in mind to meet durability requirements - How to model, simulate and test with different materials in different fatigue scenarios - The importance and limitations of different models for cost effective and efficient testing Whilst the book focuses on theories commonly used in the automotive industry, it is also an ideal resource for engineers and analysts in other disciplines such as aerospace engineering, civil engineering, offshore engineering, and industrial engineering. - The only book on the market to address state-of-the-art technologies in load, stress and fatigue damage analyses and their application to engineering design for durability - Intended to bridge the technology gap between academia and industry - written by an expert team with extensive industrial, research and professorial experience in fatigue analysis and testing - An advanced mechanical engineering design handbook focused on the needs of professional engineers within automotive, aerospace and related industrial disciplines
Multiaxial Notch Fatigue
Author: Luca Susmel
Publisher: Elsevier
ISBN: 1845695836
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
Metal and composite components used in structural engineering not only contain geometrical features resulting in stress concentration phenomena, but they are also subjected to in-service multiaxial fatigue loading. To address the problem, structural engineers need reliable methodologies which allow for an adequate margin of safety. The book summarises methods devised by the author to design real components against multiaxial fatigue by taking full advantage not only of nominal but also of local stress-strain quantities.The book begins by reviewing definitions suitable for calculating the stress-strain quantities commonly used to perform fatigue assessment. The Modified Wöhler Curve Method is then explained in detail, by focusing attention on both the high- and the medium-cycle fatigue regime. The existing links between the multiaxial fatigue criterion and physical properties are also discussed. A procedure suitable for employing the method developed by the author to estimate fatigue damage both in notched and in welded components is explained. The Modified Manson-Coffin Curve method is investigated in depth, by reviewing those concepts playing a fundamental role in the so-called strain based approach. Lastly, the problem of performing the fatigue assessment of composite materials is addressed by considering design parameters influencing composite behaviour under complex cyclic loading paths and those criteria suitable for designing real components against multiaxial fatigue. The book also contains two appendices summarising experimental data from the technical literature. These appendices provide a unique and highly valuable resource for engineers. The appendices summarise around 100 values of the material characteristic length L, experimentally determined by testing specimens made of different engineering materials and about 4500 experimental fatigue results generated by testing plain, notched and welded specimens under constant-amplitude proportional and non-proportional multiaxial fatigue loading are listed. - Summarises methods devised by the author to design real components against multiaxial fatigue - Reviews definitions suitable for calculating the stress-strain quantities commonly used to perform fatigue assessment - Includes an in-depth explanation of both the Modified Wöhler Curve and Modified Manson-Coffin Curve Method
Publisher: Elsevier
ISBN: 1845695836
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
Metal and composite components used in structural engineering not only contain geometrical features resulting in stress concentration phenomena, but they are also subjected to in-service multiaxial fatigue loading. To address the problem, structural engineers need reliable methodologies which allow for an adequate margin of safety. The book summarises methods devised by the author to design real components against multiaxial fatigue by taking full advantage not only of nominal but also of local stress-strain quantities.The book begins by reviewing definitions suitable for calculating the stress-strain quantities commonly used to perform fatigue assessment. The Modified Wöhler Curve Method is then explained in detail, by focusing attention on both the high- and the medium-cycle fatigue regime. The existing links between the multiaxial fatigue criterion and physical properties are also discussed. A procedure suitable for employing the method developed by the author to estimate fatigue damage both in notched and in welded components is explained. The Modified Manson-Coffin Curve method is investigated in depth, by reviewing those concepts playing a fundamental role in the so-called strain based approach. Lastly, the problem of performing the fatigue assessment of composite materials is addressed by considering design parameters influencing composite behaviour under complex cyclic loading paths and those criteria suitable for designing real components against multiaxial fatigue. The book also contains two appendices summarising experimental data from the technical literature. These appendices provide a unique and highly valuable resource for engineers. The appendices summarise around 100 values of the material characteristic length L, experimentally determined by testing specimens made of different engineering materials and about 4500 experimental fatigue results generated by testing plain, notched and welded specimens under constant-amplitude proportional and non-proportional multiaxial fatigue loading are listed. - Summarises methods devised by the author to design real components against multiaxial fatigue - Reviews definitions suitable for calculating the stress-strain quantities commonly used to perform fatigue assessment - Includes an in-depth explanation of both the Modified Wöhler Curve and Modified Manson-Coffin Curve Method
Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture
Author: Ewald Macha
Publisher:
ISBN: 9788386708406
Category :
Languages : en
Pages : 102
Book Description
Publisher:
ISBN: 9788386708406
Category :
Languages : en
Pages : 102
Book Description
Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture
Author: Ricardo R. Ambriz
Publisher: Springer
ISBN: 331970365X
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book presents the proceedings of one of the major conferences in fatigue, fracture and structural integrity (NT2F). The papers are organized and divided in five different themes: fatigue and fracture mechanics of structures and advanced materials; fatigue and fracture in pressure vessels and pipelines: mechanical behavior and structural integrity of welded, bonded and bolted joints; residual stress and environmental effects on the fatigue behavior; and simulation methods, analytical and computation models in fatigue and fracture.
Publisher: Springer
ISBN: 331970365X
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book presents the proceedings of one of the major conferences in fatigue, fracture and structural integrity (NT2F). The papers are organized and divided in five different themes: fatigue and fracture mechanics of structures and advanced materials; fatigue and fracture in pressure vessels and pipelines: mechanical behavior and structural integrity of welded, bonded and bolted joints; residual stress and environmental effects on the fatigue behavior; and simulation methods, analytical and computation models in fatigue and fracture.