Author: Vadim Olshevsky
Publisher: American Mathematical Soc.
ISBN: 0821831771
Category : Mathematics
Languages : en
Pages : 448
Book Description
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
Fast Algorithms for Structured Matrices
Author: Vadim Olshevsky
Publisher: American Mathematical Soc.
ISBN: 0821831771
Category : Mathematics
Languages : en
Pages : 448
Book Description
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
Publisher: American Mathematical Soc.
ISBN: 0821831771
Category : Mathematics
Languages : en
Pages : 448
Book Description
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
Structured Matrices and Polynomials
Author: Victor Y. Pan
Publisher: Springer Science & Business Media
ISBN: 1461201292
Category : Mathematics
Languages : en
Pages : 299
Book Description
This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.
Publisher: Springer Science & Business Media
ISBN: 1461201292
Category : Mathematics
Languages : en
Pages : 299
Book Description
This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.
Fast Reliable Algorithms for Matrices with Structure
Author: T. Kailath
Publisher: SIAM
ISBN: 9781611971354
Category : Computers
Languages : en
Pages : 351
Book Description
This book is the first to pay special attention to the combined issues of speed and numerical reliability in algorithm development. These two requirements have often been regarded as competitive, so much so that the design of fast and numerically reliable algorithms for large-scale structured systems of linear equations, in many cases, remains a significant open issue. Fast Reliable Algorithms for Matrices with Structure helps bridge this gap by providing the reader with recent contributions written by leading experts in the field. The authors deal with both the theory and the practice of fast numerical algorithms for large-scale structured linear systems. Each chapter covers in detail different aspects of the most recent trends in the theory of fast algorithms, with emphasis on implementation and application issues. Both direct and iterative methods are covered. This book is not merely a collection of articles. The editors have gone to considerable lengths to blend the individual papers into a consistent presentation. Each chapter exposes the reader to some of the most recent research while providing enough background material to put the work into proper context.
Publisher: SIAM
ISBN: 9781611971354
Category : Computers
Languages : en
Pages : 351
Book Description
This book is the first to pay special attention to the combined issues of speed and numerical reliability in algorithm development. These two requirements have often been regarded as competitive, so much so that the design of fast and numerically reliable algorithms for large-scale structured systems of linear equations, in many cases, remains a significant open issue. Fast Reliable Algorithms for Matrices with Structure helps bridge this gap by providing the reader with recent contributions written by leading experts in the field. The authors deal with both the theory and the practice of fast numerical algorithms for large-scale structured linear systems. Each chapter covers in detail different aspects of the most recent trends in the theory of fast algorithms, with emphasis on implementation and application issues. Both direct and iterative methods are covered. This book is not merely a collection of articles. The editors have gone to considerable lengths to blend the individual papers into a consistent presentation. Each chapter exposes the reader to some of the most recent research while providing enough background material to put the work into proper context.
Structured Matrices
Author: Dario Bini
Publisher: Nova Biomedical Books
ISBN:
Category : Mathematics
Languages : en
Pages : 222
Book Description
Mathematicians from various countries assemble computational techniques that have developed and described over the past two decades to analyze matrices with structure, which are encountered in a wide variety of problems in pure and applied mathematics and in engineering. The 16 studies are on asymptotical spectral properties; algorithm design and analysis; issues specifically relating to structures, algebras, and polynomials; and image processing and differential equations. c. Book News Inc.
Publisher: Nova Biomedical Books
ISBN:
Category : Mathematics
Languages : en
Pages : 222
Book Description
Mathematicians from various countries assemble computational techniques that have developed and described over the past two decades to analyze matrices with structure, which are encountered in a wide variety of problems in pure and applied mathematics and in engineering. The 16 studies are on asymptotical spectral properties; algorithm design and analysis; issues specifically relating to structures, algebras, and polynomials; and image processing and differential equations. c. Book News Inc.
Hierarchical Matrices: Algorithms and Analysis
Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532
Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532
Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
System Theory, the Schur Algorithm and Multidimensional Analysis
Author: Daniel Alpay
Publisher: Springer Science & Business Media
ISBN: 3764381361
Category : Mathematics
Languages : en
Pages : 331
Book Description
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Publisher: Springer Science & Business Media
ISBN: 3764381361
Category : Mathematics
Languages : en
Pages : 331
Book Description
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Matrix Algorithms in MATLAB
Author: Ong U. Routh
Publisher: Academic Press
ISBN: 0128038691
Category : Computers
Languages : en
Pages : 483
Book Description
Matrix Algorithms in MATLAB focuses on the MATLAB code implementations of matrix algorithms. The MATLAB codes presented in the book are tested with thousands of runs of MATLAB randomly generated matrices, and the notation in the book follows the MATLAB style to ensure a smooth transition from formulation to the code, with MATLAB codes discussed in this book kept to within 100 lines for the sake of clarity. The book provides an overview and classification of the interrelations of various algorithms, as well as numerous examples to demonstrate code usage and the properties of the presented algorithms. Despite the wide availability of computer programs for matrix computations, it continues to be an active area of research and development. New applications, new algorithms, and improvements to old algorithms are constantly emerging. - Presents the first book available on matrix algorithms implemented in real computer code - Provides algorithms covered in three parts, the mathematical development of the algorithm using a simple example, the code implementation, and then numerical examples using the code - Allows readers to gain a quick understanding of an algorithm by debugging or reading the source code - Includes downloadable codes on an accompanying companion website, www.matrixalgorithmsinmatlab.com, that can be used in other software development
Publisher: Academic Press
ISBN: 0128038691
Category : Computers
Languages : en
Pages : 483
Book Description
Matrix Algorithms in MATLAB focuses on the MATLAB code implementations of matrix algorithms. The MATLAB codes presented in the book are tested with thousands of runs of MATLAB randomly generated matrices, and the notation in the book follows the MATLAB style to ensure a smooth transition from formulation to the code, with MATLAB codes discussed in this book kept to within 100 lines for the sake of clarity. The book provides an overview and classification of the interrelations of various algorithms, as well as numerous examples to demonstrate code usage and the properties of the presented algorithms. Despite the wide availability of computer programs for matrix computations, it continues to be an active area of research and development. New applications, new algorithms, and improvements to old algorithms are constantly emerging. - Presents the first book available on matrix algorithms implemented in real computer code - Provides algorithms covered in three parts, the mathematical development of the algorithm using a simple example, the code implementation, and then numerical examples using the code - Allows readers to gain a quick understanding of an algorithm by debugging or reading the source code - Includes downloadable codes on an accompanying companion website, www.matrixalgorithmsinmatlab.com, that can be used in other software development
Matrix Methods: Theory, Algorithms And Applications - Dedicated To The Memory Of Gene Golub
Author: Vadim Olshevsky
Publisher: World Scientific
ISBN: 9814469556
Category : Mathematics
Languages : en
Pages : 604
Book Description
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.
Publisher: World Scientific
ISBN: 9814469556
Category : Mathematics
Languages : en
Pages : 604
Book Description
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.
Matrix Structured Image Processing
Author: Edward R. Dougherty
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 298
Book Description
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 298
Book Description
Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications
Author: Michele Benzi
Publisher: Springer
ISBN: 3319498878
Category : Mathematics
Languages : en
Pages : 413
Book Description
Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.
Publisher: Springer
ISBN: 3319498878
Category : Mathematics
Languages : en
Pages : 413
Book Description
Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.