Author: Werner Müller
Publisher: Springer
ISBN: 3319414240
Category : Mathematics
Languages : en
Pages : 581
Book Description
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Families of Automorphic Forms and the Trace Formula
Author: Werner Müller
Publisher: Springer
ISBN: 3319414240
Category : Mathematics
Languages : en
Pages : 581
Book Description
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Publisher: Springer
ISBN: 3319414240
Category : Mathematics
Languages : en
Pages : 581
Book Description
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Geometric Aspects of the Trace Formula
Author: Werner Müller
Publisher: Springer
ISBN: 3319948334
Category : Mathematics
Languages : en
Pages : 461
Book Description
The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum. Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.
Publisher: Springer
ISBN: 3319948334
Category : Mathematics
Languages : en
Pages : 461
Book Description
The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum. Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.
Automorphic Forms on GL (2)
Author: H. Jacquet
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156
Book Description
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156
Book Description
Harmonic Analysis, the Trace Formula, and Shimura Varieties
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821838440
Category : Mathematics
Languages : en
Pages : 708
Book Description
Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.
Publisher: American Mathematical Soc.
ISBN: 9780821838440
Category : Mathematics
Languages : en
Pages : 708
Book Description
Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.
Automorphic Forms and Applications
Author: Peter Sarnak
Publisher: American Mathematical Soc.
ISBN: 0821828738
Category : Mathematics
Languages : en
Pages : 443
Book Description
The theory of automorphic forms has seen dramatic developments in recent years. In particular, important instances of Langlands functoriality have been established. This volume presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on automorphic forms and their applications. It addresses some of the general aspects of automorphic forms, as well as certain recent advances in the field. The book starts with the lectures of Borel on the basic theory of automorphic forms, which lay the foundation for the lectures by Cogdell and Shahidi on converse theorems and the Langlands-Shahidi method, as well as those by Clozel and Li on the Ramanujan conjectures and graphs. The analytic theory of GL(2)-forms and $L$-functions are the subject of Michel's lectures, while Terras covers arithmetic quantum chaos. The volume also includes a chapter by Vogan on isolated unitary representations, which is related to the lectures by Clozel. This volume is recommended for independent study or an advanced topics course. It is suitable for graduate students and researchers interested in automorphic forms and number theory. the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 0821828738
Category : Mathematics
Languages : en
Pages : 443
Book Description
The theory of automorphic forms has seen dramatic developments in recent years. In particular, important instances of Langlands functoriality have been established. This volume presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on automorphic forms and their applications. It addresses some of the general aspects of automorphic forms, as well as certain recent advances in the field. The book starts with the lectures of Borel on the basic theory of automorphic forms, which lay the foundation for the lectures by Cogdell and Shahidi on converse theorems and the Langlands-Shahidi method, as well as those by Clozel and Li on the Ramanujan conjectures and graphs. The analytic theory of GL(2)-forms and $L$-functions are the subject of Michel's lectures, while Terras covers arithmetic quantum chaos. The volume also includes a chapter by Vogan on isolated unitary representations, which is related to the lectures by Clozel. This volume is recommended for independent study or an advanced topics course. It is suitable for graduate students and researchers interested in automorphic forms and number theory. the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Modern Analysis of Automorphic Forms By Example
Author: Paul Garrett
Publisher: Cambridge University Press
ISBN: 1107154006
Category : Mathematics
Languages : en
Pages : 407
Book Description
Volume 1 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.
Publisher: Cambridge University Press
ISBN: 1107154006
Category : Mathematics
Languages : en
Pages : 407
Book Description
Volume 1 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.
Spectral Methods of Automorphic Forms
Author: Henryk Iwaniec
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220
Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220
Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
On the Stabilization of the Trace Formula
Author: Laurent Clozel
Publisher: International Pressof Boston Incorporated
ISBN: 9781571462275
Category : Mathematics
Languages : en
Pages : 527
Book Description
Publisher: International Pressof Boston Incorporated
ISBN: 9781571462275
Category : Mathematics
Languages : en
Pages : 527
Book Description
Automorphic Forms on GL (3,TR)
Author: D. Bump
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Analytic Methods in Arithmetic Geometry
Author: Alina Bucur
Publisher: American Mathematical Soc.
ISBN: 1470437848
Category : Education
Languages : en
Pages : 258
Book Description
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.
Publisher: American Mathematical Soc.
ISBN: 1470437848
Category : Education
Languages : en
Pages : 258
Book Description
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.