Boosting-Based Face Detection and Adaptation

Boosting-Based Face Detection and Adaptation PDF Author: Matthieu Salzmann
Publisher: Springer Nature
ISBN: 3031018095
Category : Computers
Languages : en
Pages : 132

Get Book Here

Book Description
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work

Boosting-Based Face Detection and Adaptation

Boosting-Based Face Detection and Adaptation PDF Author: Matthieu Salzmann
Publisher: Springer Nature
ISBN: 3031018095
Category : Computers
Languages : en
Pages : 132

Get Book Here

Book Description
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work

Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014 PDF Author: David Fleet
Publisher: Springer
ISBN: 331910599X
Category : Computers
Languages : en
Pages : 855

Get Book Here

Book Description
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.

Advances in Face Detection and Facial Image Analysis

Advances in Face Detection and Facial Image Analysis PDF Author: Michal Kawulok
Publisher: Springer
ISBN: 331925958X
Category : Technology & Engineering
Languages : en
Pages : 438

Get Book Here

Book Description
This book presents the state-of-the-art in face detection and analysis. It outlines new research directions, including in particular psychology-based facial dynamics recognition, aimed at various applications such as behavior analysis, deception detection, and diagnosis of various psychological disorders. Topics of interest include face and facial landmark detection, face recognition, facial expression and emotion analysis, facial dynamics analysis, face classification, identification, and clustering, and gaze direction and head pose estimation, as well as applications of face analysis.

Handbook of Digital Face Manipulation and Detection

Handbook of Digital Face Manipulation and Detection PDF Author: Christian Rathgeb
Publisher: Springer Nature
ISBN: 3030876640
Category : Computers
Languages : en
Pages : 481

Get Book Here

Book Description
This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area.

Face Detection and Modeling for Recognition

Face Detection and Modeling for Recognition PDF Author: Rein-Lien Hsu
Publisher:
ISBN:
Category : Biometry
Languages : en
Pages : 400

Get Book Here

Book Description
Face recognition has received substantial attention from researchers in biometrics, computer vision, pattern recognition, and cognitive psychology communities because of the increased attention being devoted to security, man-machine communication, content-based image retrieval, and image/video coding. We have proposed two automated recognition paradigms to advance face recognition technology. Three major tasks involved in face recognition systems are: (i) face detection, (ii) face modeling, and (iii) face matching. We have developed a face detection algorithm for color images in the presence of various lighting conditions as well as complex backgrounds. Our detection method first corrects the color bias by a lighting compensation technique that automatically estimates the parameters of reference white for color correction. We overcame the difficulty of detecting the low-luma and high-luma skin tones by applying a nonlinear transformation to the Y CbCr color space. Our method generates face candidates based on the spatial arrangement of detected skin patches. We constructed eye, mouth, and face boundary maps to verify each face candidate. Experimental results demonstrate successful detection of faces with different sizes, color, position, scale, orientation, 3D pose, and expression in several photo collections. 3D human face models augment the appearance-based face recognition approaches to assist face recognition under the illumination and head pose variations. For the two proposed recognition paradigms, we have designed two methods for modeling human faces based on (i) a generic 3D face model and an individual's facial measurements of shape and texture captured in the frontal view, and (ii) alignment of a semantic face graph, derived from a generic 3D face model, onto a frontal face image.

The Sixth International Symposium on Neural Networks (ISNN 2009)

The Sixth International Symposium on Neural Networks (ISNN 2009) PDF Author: Hongwei Wang
Publisher: Springer Science & Business Media
ISBN: 3642012167
Category : Computers
Languages : en
Pages : 904

Get Book Here

Book Description
This volume of Advances in Soft Computing and Lecture Notes in Computer th Science vols. 5551, 5552 and 5553, constitute the Proceedings of the 6 Inter- tional Symposium of Neural Networks (ISNN 2009) held in Wuhan, China during May 26–29, 2009. ISNN is a prestigious annual symposium on neural networks with past events held in Dalian (2004), Chongqing (2005), Chengdu (2006), N- jing (2007) and Beijing (2008). Over the past few years, ISNN has matured into a well-established series of international conference on neural networks and their applications to other fields. Following this tradition, ISNN 2009 provided an a- demic forum for the participants to disseminate their new research findings and discuss emerging areas of research. Also, it created a stimulating environment for the participants to interact and exchange information on future research challenges and opportunities of neural networks and their applications. ISNN 2009 received 1,235 submissions from about 2,459 authors in 29 co- tries and regions (Australia, Brazil, Canada, China, Democratic People's Republic of Korea, Finland, Germany, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Norway, Qatar, Republic of Korea, Singapore, Spain, Taiwan, Thailand, Tunisia, United Kingdom, United States, Venezuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on rigorous reviews by the Program Committee members and reviewers, 95 high-quality papers were selected to be published in this volume.

Face Detection and Adaptation

Face Detection and Adaptation PDF Author: Cha Zhang
Publisher: Morgan & Claypool Publishers
ISBN: 1608451348
Category : Computers
Languages : en
Pages : 140

Get Book Here

Book Description
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work

Machine Intelligence and Signal Processing

Machine Intelligence and Signal Processing PDF Author: Richa Singh
Publisher: Springer
ISBN: 8132226259
Category : Technology & Engineering
Languages : en
Pages : 169

Get Book Here

Book Description
This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics – two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis – a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.

Fitting the Mind to the World

Fitting the Mind to the World PDF Author: Colin W. G. Clifford
Publisher: Oxford University Press
ISBN: 9780198529699
Category : Philosophy
Languages : en
Pages : 388

Get Book Here

Book Description
"This book brings together a collection of studies from international researchers who demonstrate the brain's remarkable capacity to adapt its representation of the visual world in response to changes in its environment."--BOOK JACKET.

Handbook of Face Recognition

Handbook of Face Recognition PDF Author: Stan Z. Li
Publisher: Springer Science & Business Media
ISBN: 0387272577
Category : Computers
Languages : en
Pages : 394

Get Book Here

Book Description
Although the history of computer-aided face recognition stretches back to the 1960s, automatic face recognition remains an unsolved problem and still offers a great challenge to computer-vision and pattern recognition researchers. This handbook is a comprehensive account of face recognition research and technology, written by a group of leading international researchers. Twelve chapters cover all the sub-areas and major components for designing operational face recognition systems. Background, modern techniques, recent results, and challenges and future directions are considered. The book is aimed at practitioners and professionals planning to work in face recognition or wanting to become familiar with the state-of- the-art technology. A comprehensive handbook, by leading research authorities, on the concepts, methods, and algorithms for automated face detection and recognition. Essential reference resource for researchers and professionals in biometric security, computer vision, and video image analysis.