Exploring Neural Networks with C#

Exploring Neural Networks with C# PDF Author: Ryszard Tadeusiewicz
Publisher: CRC Press
ISBN: 1482233401
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
The utility of artificial neural network models lies in the fact that they can be used to infer functions from observations making them especially useful in applications where the complexity of data or tasks makes the design of such functions by hand impractical.Exploring Neural Networks with C# presents the important properties of neural networks

Exploring Neural Networks with C#

Exploring Neural Networks with C# PDF Author: Ryszard Tadeusiewicz
Publisher: CRC Press
ISBN: 1482233401
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
The utility of artificial neural network models lies in the fact that they can be used to infer functions from observations making them especially useful in applications where the complexity of data or tasks makes the design of such functions by hand impractical.Exploring Neural Networks with C# presents the important properties of neural networks

Exploring Neural Networks with C#

Exploring Neural Networks with C# PDF Author: Ryszard Tadeusiewicz
Publisher: CRC Press
ISBN: 1498760376
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
The utility of artificial neural network models lies in the fact that they can be used to infer functions from observations making them especially useful in applications where the complexity of data or tasks makes the design of such functions by hand impractical.Exploring Neural Networks with C# presents the important properties of neural networks

Neural Networks and Deep Learning

Neural Networks and Deep Learning PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512

Get Book Here

Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R PDF Author: Emil Hvitfeldt
Publisher: CRC Press
ISBN: 1000461971
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Neural Networks in Unity

Neural Networks in Unity PDF Author: Abhishek Nandy
Publisher: Apress
ISBN: 1484236734
Category : Computers
Languages : en
Pages : 166

Get Book Here

Book Description
Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You’ll then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial. Once you’ve gained the basics, you’ll start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, you’ll define back propagation with Unity C#, before compiling your project. What You'll Learn Discover the concepts behind neural networks Work with Unity and C# See the difference between fully connected and convolutional neural networks Master neural network processing for Windows 10 UWP Who This Book Is For Gaming professionals, machine learning and deep learning enthusiasts.

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics PDF Author: Carl Faingold
Publisher: Academic Press
ISBN: 0124158641
Category : Medical
Languages : en
Pages : 537

Get Book Here

Book Description
Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available

Neural Network Design

Neural Network Design PDF Author: Martin T. Hagan
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :

Get Book Here

Book Description


Hands-On Neural Network Programming with C#

Hands-On Neural Network Programming with C# PDF Author: Matt R. Cole
Publisher: Packt Publishing Ltd
ISBN: 1789619866
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Create and unleash the power of neural networks by implementing C# and .Net code Key FeaturesGet a strong foundation of neural networks with access to various machine learning and deep learning librariesReal-world case studies illustrating various neural network techniques and architectures used by practitionersCutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many moreBook Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learnUnderstand perceptrons and how to implement them in C#Learn how to train and visualize a neural network using cognitive servicesPerform image recognition for detecting and labeling objects using C# and TensorFlowSharpDetect specific image characteristics such as a face using Accord.NetDemonstrate particle swarm optimization using a simple XOR problem and EncogTrain convolutional neural networks using ConvNetSharpFind optimal parameters for your neural network functions using numeric and heuristic optimization techniques.Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book

Exploring Artificial Intelligence: A Student’s Handbook

Exploring Artificial Intelligence: A Student’s Handbook PDF Author: Dr Thiyagarajan Sivaprakasam
Publisher: THIYAGARAJAN SIVAPRAKASAM
ISBN: 8119106792
Category : Computers
Languages : en
Pages : 458

Get Book Here

Book Description
Exploring Artificial intelligence: A Student’s Handbook is a comprehensive educational guide designed to demystify Al for students, covering foundational theories and practical applications across twenty chapters. It progresses from basic machine learning algorithms to advanced topics, incorporating interactive quizzes, “Did You Know?” facts, and real-world examples to enrich learning. The book emphasizes hands-on interaction with Al through step-by-step activities, aiming to bridge theory and practice. It also addresses the ethical, societal, and futuristic aspects of Al, encouraging readers to consider the broader implications of Al technologies. This handbook serves as a foundational resource for aspiring Al enthusiasts, researchers, and practitioners, fostering a deeper understanding of Al’s impact on the future.

Practical Neural Network Recipes in C++

Practical Neural Network Recipes in C++ PDF Author: Timothy Masters
Publisher: Elsevier
ISBN: 9780124790414
Category : C (Computer program language)
Languages : en
Pages : 493

Get Book Here

Book Description