Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames

Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames PDF Author: Kenneth Owen Smith
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 488

Get Book Here

Book Description

Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames

Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames PDF Author: Kenneth Owen Smith
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 488

Get Book Here

Book Description


Experimental Investigation on the Effects of Free Stream Turbulence and Fuel Type on Structure and Blowoff Characteristics of Turbulent Premixed Bluff-body Stabilized Flames

Experimental Investigation on the Effects of Free Stream Turbulence and Fuel Type on Structure and Blowoff Characteristics of Turbulent Premixed Bluff-body Stabilized Flames PDF Author: Bikram Roy Chowdhury
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
An experimental investigation on the effect of different levels of turbulence intensity and properties of the fuel/air mixture on the structure and characteristics of lean flames stabilized on an axisymmetric bluff body is described in this thesis. Simultaneous imaging of hydroxyl (OH) and formaldehyde (CH2O) by planar laser induced fluorescence and particle image velocimetry (PIV) were used to study the interaction between the flame and the flow field. CH2O fluorescence and the pixel-by-pixel multiplication of OH and CH2O fluorescence signals were utilized to mark preheat and heat release regions respectively. In addition, high-speed chemiluminescence imaging was performed to understand the time resolved characteristics of the flame. The first part of the thesis focuses on the characteristics of stably burning lean methane/-, propane/- and ethylene/air flames when subjected to low (4 %), moderate (14 %) and intense (24 and 30%) levels of free stream turbulence. The flame front structure was observed to be strongly dependent on the free stream turbulence level of the incoming fuel/air mixture as well on the properties of the fuel/air mixture. Formation of cusps and unburnt mixture fingers were observed as the turbulence intensity was increased from 4 to 14 % but, the heat release region remained continuous. Under intense turbulence conditions, methane/- and ethylene/air (f = 0.85) flames exhibited localized extinctions along the flame sheet and flamelet merging events which created isolated pockets of reactants in the flame envelope. In addition to these features, propane/- and ethylene/air (f=0.655) flames exhibited the occurrence of flame fragmentation events and the general shape of these flames were observed to intermittently switch from a symmetric (varicose) to asymmetric (sinuous) mode. Several properties were measured to characterize the effects of turbulence – flame interaction which includes the average preheat and reaction zone thicknesses, strain rates and curvature along the flame front, burning fraction, flame brush thickness, flame surface density, area ratio and turbulent flame speed. The next part of the thesis focuses on blowoff dynamics of lean methane/-, propane/- and ethylene/air flames for mean velocities of 5, 10 and 15 m/s and subjected to free stream turbulence levels from 4 to 30%. Apart from the propane/air flames at an apporach velcoity of 5 m/s and turbulence intensity of 30 %, increasing turbulence intensity was found to reduce the flame stability. The blowoff equivalence ratios of propane/air flames was observed to be higher than methane/- and ethylene/air flames. As blowoff was approached, the flame front and shear layer vortices entangled inducing high local strain rates on the flame front that exceed the extinction strain rate resulting in significant breaks along the reaction zone. At conditions near blowoff, significant increase in the frequency of breaks along the reaction zone was observed for low and moderate turbulence conditions. For the higher turbulence conditions, fragmentation of the flame along with the presence of sinuous wakes was observed which aided in the penetration of reactants into the recirculation zone. Velocity vectors near the flame holes indicate the penetration of the reactants into the recirculation zone. Mostly similar sequence of events was observed for methane/-, propane/- and ethylene/air flames near blowoff. Several properties weremeasured to characterize the near blowoff flames which include the strain rate and curvature statistics along the flame front, burning fraction, asymmetric index and the average duration of the blowoff event. Based on the observation from the experiments, turbulent flame speed was attributed to be the primary factor in governing the blowoff equivalence ratio. This point of view was examined by comparing the mean strain rate of methane/- and ethylene/air flames at the equivalence ratio corresponding to near blowoff for propane/air flames.

Experimental Study of Turbulent Premixed Combustion in V-shaped Flames

Experimental Study of Turbulent Premixed Combustion in V-shaped Flames PDF Author: Sina Kheirkhah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Characteristics of turbulent premixed flames were investigated experimentally. The investigations were performed using Mie scattering, Particle Image Velocimetry, Rayleigh scattering, and broad-band luminosity imaging techniques. Methane-air flames associated with a relatively wide range of turbulence intensities, fuel-air equivalence ratios, and mean bulk flow velocities were investigated. For a relatively moderate value of turbulence intensity, a new concept is introduced and utilized to provide a detailed description associated with interaction of turbulent flow and flame front. The concept pertains to reactants velocity estimated at the vicinity of the flame front and is referred to as the edge velocity. Specifically, it is shown that fluctuations of the flame front position are induced by fluctuations of the edge velocity. For a relatively wide range of turbulence intensity, several characteristics of turbulent premixed flames, namely, front topology, brush thickness, surface density, and consumption speeds are investigated. For the first time, several flame front structures are identified and studied. It is shown that, due to formation of these front structures, the regime of turbulent premixed combustion transitions from the regime of counter-gradient diffusion to that of the gradient diffusion. In addition to these, a comprehensive study is performed to investigate influence of flame configuration on several flame front characteristics. It is obtained that, although changing the flame configuration influences several flame characteristics, the trends associated with the effects of governing parameters on the characteristics are nearly independent of the flame configuration.

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion PDF Author: Frank Tat Cheong Yuen
Publisher:
ISBN: 9780494608951
Category :
Languages : en
Pages : 306

Get Book Here

Book Description
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from &phis; = 0:7 to 1.0 for propane flames, and from &phis; = 0:6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/ SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/ SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/ SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/S L regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dkappa term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 692

Get Book Here

Book Description


Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames

Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames PDF Author: Parsa Tamadonfar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.

Experimental Investigation of Turbulent Scalar Flux in Premixed Flames

Experimental Investigation of Turbulent Scalar Flux in Premixed Flames PDF Author: Peter Anthony Markus Kalt
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 436

Get Book Here

Book Description


Experiments in Laminar and Turbulent Premixed Counter-flow Flames at Variable Lewis Number

Experiments in Laminar and Turbulent Premixed Counter-flow Flames at Variable Lewis Number PDF Author: Sean Salusbury
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"This thesis examines preferential diffusion effects in laminar and turbulent premixed combustion. Stretched, fuel-lean, laminar flames of methane, propane and hydrogen are studied experimentally in a counter-flow flame configuration to investigate the effect of Lewis number on stretched flames. Laminar flame results show that a maximum reference flame speed exists for mixtures with Le >= 1 at lower flame-stretch values than the extinction stretch rate. A continually-increasing reference flame speed is measured for Le “ 1 mixtures until extinction occurs when the flame is constrained by the stagnation point.Turbulent counter-flow flame experiments are then performed for these mixtures, using high-blockage turbulence-generating plates to produce turbulence intensities on the order of u'/sLo = 1 to 10. Measurements of average and instantaneous velocity within the turbulent flame are performed by time-resolved particle image velocimetry measurements. Average and instantaneous flame front position is also measured by Rayleigh spectroscopy.Measurements of average turbulent burning velocity demonstrate the ambiguity in definitions of the burning velocity and the difficulty of examining turbulent flame chemistry using averaged measurements. Instantaneous statistics are shown to be superior tools for studying turbulent combustion. The probability-density functions (PDF) of the local flamelet burning velocities for Le >= 1 mixtures show that the instantaneous flamelet burning velocities increase with increasing turbulence intensity and flame stretch. The PDF for the Le ~= 1 mixture has a sharply skewed shape at high turbulence intensity and has a sharp drop-off in probability at a velocity that corresponds with the experimentally-measured maximum reference flame speed from the laminar flame experiments. In contrast, in the Le “ 1 turbulent flames, the most-probable instantaneous flamelet burning velocities increase with increasing turbulence intensity and can significantly exceed the maximum reference flame speed measured in counter-flow laminar flames at extinction.These results are reinforced by instantaneous flame position measurements. Flame front location PDFs show the most probable flame location to be linked to velocity PDFs. Furthermore, hydrogen PDFs are recognizably skewed as u'/sLo increases, indicating a tendency for the Le “ 1 mixture to propagate farther into the unburned reactants. These results support the leading edge theory of premixed turbulent flame propagation for flames in which preferential diffusion effects are expected.In the study of turbulent flames, this work promotes the use of local, instantaneous statistics as a tool for describing experimental results and studying fuel chemistry." --

Turbulent Reactive Flows

Turbulent Reactive Flows PDF Author: R. Borghi
Publisher: Springer Science & Business Media
ISBN: 146139631X
Category : Science
Languages : en
Pages : 958

Get Book Here

Book Description
Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.