Author: Sujoy Kumar Saha
Publisher: Springer
ISBN: 3030207404
Category : Science
Languages : en
Pages : 111
Book Description
This Brief stands as a primer for heat transfer fundamentals in heat transfer enhancement devices, the definition of heat transfer area, passive and active enhancement techniques and their potential and benefits and commercial applications. It further examines techniques and modes of heat transfer like single-phase flow and two-phase flow, natural and forced convection, radiation heat transfer and convective mass transfer.
Introduction to Enhanced Heat Transfer
Author: Sujoy Kumar Saha
Publisher: Springer
ISBN: 3030207404
Category : Science
Languages : en
Pages : 111
Book Description
This Brief stands as a primer for heat transfer fundamentals in heat transfer enhancement devices, the definition of heat transfer area, passive and active enhancement techniques and their potential and benefits and commercial applications. It further examines techniques and modes of heat transfer like single-phase flow and two-phase flow, natural and forced convection, radiation heat transfer and convective mass transfer.
Publisher: Springer
ISBN: 3030207404
Category : Science
Languages : en
Pages : 111
Book Description
This Brief stands as a primer for heat transfer fundamentals in heat transfer enhancement devices, the definition of heat transfer area, passive and active enhancement techniques and their potential and benefits and commercial applications. It further examines techniques and modes of heat transfer like single-phase flow and two-phase flow, natural and forced convection, radiation heat transfer and convective mass transfer.
Research and Development Progress Report
Author: United States. Office of Saline Water
Publisher:
ISBN:
Category : Saline water conversion
Languages : en
Pages : 874
Book Description
Publisher:
ISBN:
Category : Saline water conversion
Languages : en
Pages : 874
Book Description
Heat and Mass Transfer
Author: Hans Dieter Baehr
Publisher: Springer Science & Business Media
ISBN: 3540295275
Category : Science
Languages : en
Pages : 706
Book Description
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Publisher: Springer Science & Business Media
ISBN: 3540295275
Category : Science
Languages : en
Pages : 706
Book Description
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
VDI Heat Atlas
Author: VDI Gesellschaft
Publisher: Springer Science & Business Media
ISBN: 3540778764
Category : Science
Languages : en
Pages : 1608
Book Description
For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.
Publisher: Springer Science & Business Media
ISBN: 3540778764
Category : Science
Languages : en
Pages : 1608
Book Description
For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.
Nanofluids for Heat and Mass Transfer
Author: Bharat Bhanvase
Publisher: Academic Press
ISBN: 0128219475
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications presents the latest on the performance of nanofluids in heat transfer systems. Dr. Bharat Bhanvase investigates characterization techniques and the various properties of nanofluids to analyze their efficiency and abilities in a variety of settings. The book moves through a presentation of the fundamentals of synthesis and nanofluid characterization to various properties and applications. Aimed at academics and researchers focused on heat transfer in energy and engineering disciplines, this book considers sustainable manufacturing processes within newer energy harvesting technologies to serve as an authoritative and well-rounded reference. - Highlights the major elements of nanofluids as an energy harvesting fluid, including their preparation methods, characterization techniques, properties and applications - Includes valuable findings and insights from numerical and computational studies - Provides nanofluid researchers with research inspiration to discover new applications and further develop technologies
Publisher: Academic Press
ISBN: 0128219475
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications presents the latest on the performance of nanofluids in heat transfer systems. Dr. Bharat Bhanvase investigates characterization techniques and the various properties of nanofluids to analyze their efficiency and abilities in a variety of settings. The book moves through a presentation of the fundamentals of synthesis and nanofluid characterization to various properties and applications. Aimed at academics and researchers focused on heat transfer in energy and engineering disciplines, this book considers sustainable manufacturing processes within newer energy harvesting technologies to serve as an authoritative and well-rounded reference. - Highlights the major elements of nanofluids as an energy harvesting fluid, including their preparation methods, characterization techniques, properties and applications - Includes valuable findings and insights from numerical and computational studies - Provides nanofluid researchers with research inspiration to discover new applications and further develop technologies
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 542
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 542
Book Description
Transport Phenomena in Capillary-Porous Structures and Heat Pipes
Author: Henry Smirnov
Publisher: CRC Press
ISBN: 1420062077
Category : Science
Languages : en
Pages : 406
Book Description
Two-phase nano- and micro-thermal control device research is now proving relevant to a growing range of modern applications, including those in cryogenics, thermal engineering, MEMS, and aerospace engineering. Until now, researchers have lacked a definitive resource that provides a complete review of micro- and nano-scale evaporative heat and mass
Publisher: CRC Press
ISBN: 1420062077
Category : Science
Languages : en
Pages : 406
Book Description
Two-phase nano- and micro-thermal control device research is now proving relevant to a growing range of modern applications, including those in cryogenics, thermal engineering, MEMS, and aerospace engineering. Until now, researchers have lacked a definitive resource that provides a complete review of micro- and nano-scale evaporative heat and mass
Heat and Fluid Flow in Power System Components
Author: A. M. A. Rezk
Publisher: Elsevier
ISBN: 1483147088
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Heat and Fluid Flow in Power System Components is a collection of papers presented at the Second Conference on Mechanical Power Engineering held in Cairo, Egypt in September 1978. This volume covers a wide range of topics relating to heat and fluid flow in power system components, including film cooling, droplet evaporation, and laminar flames. Practical applications such as furnaces, heat exchanges, pumps, and turbines are also discussed. Results of investigations carried out experimentally, by computation, and both computation and experimentation techniques are presented. This book is comprised of 21 chapters and begins with an analysis of heat transfer in power elements, including evaporation of surface liquid droplet in an air stream. The thermal conductivity of granular materials is also examined. The following chapters explore reactive and non-reactive flows, paying particular attention to helium two-phase instabilities; air flow around hyperbolic cooling towers; pulsating flow in axial turbines; laminar flame propagation in tubes; and characteristics of combustion heat liberated downstream of circular bluff bodies. The final chapter is devoted to an experimental and theoretical investigation of the reversed flow furnace. This monograph will be of interest to chemical and mechanical engineers as well as researchers concerned with the design, development, and optimum modes of operations of power systems and their components.
Publisher: Elsevier
ISBN: 1483147088
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Heat and Fluid Flow in Power System Components is a collection of papers presented at the Second Conference on Mechanical Power Engineering held in Cairo, Egypt in September 1978. This volume covers a wide range of topics relating to heat and fluid flow in power system components, including film cooling, droplet evaporation, and laminar flames. Practical applications such as furnaces, heat exchanges, pumps, and turbines are also discussed. Results of investigations carried out experimentally, by computation, and both computation and experimentation techniques are presented. This book is comprised of 21 chapters and begins with an analysis of heat transfer in power elements, including evaporation of surface liquid droplet in an air stream. The thermal conductivity of granular materials is also examined. The following chapters explore reactive and non-reactive flows, paying particular attention to helium two-phase instabilities; air flow around hyperbolic cooling towers; pulsating flow in axial turbines; laminar flame propagation in tubes; and characteristics of combustion heat liberated downstream of circular bluff bodies. The final chapter is devoted to an experimental and theoretical investigation of the reversed flow furnace. This monograph will be of interest to chemical and mechanical engineers as well as researchers concerned with the design, development, and optimum modes of operations of power systems and their components.
Heat Transfer
Author: Adrian Bejan
Publisher: John Wiley & Sons
ISBN: 1119467403
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
HEAT TRANSFER Provides authoritative coverage of the fundamentals of heat transfer, written by one of the most cited authors in all of Engineering Heat Transfer presents the fundamentals of the generation, use, conversion, and exchange of heat between physical systems. A pioneer in establishing heat transfer as a pillar of the modern thermal sciences, Professor Adrian Bejan presents the fundamental concepts and problem-solving methods of the discipline, predicts the evolution of heat transfer configurations, the principles of thermodynamics, and more. Building upon his classic 1993 book Heat Transfer, the author maintains his straightforward scientific approach to teaching essential developments such as Fourier conduction, fins, boundary layer theory, duct flow, scale analysis, and the structure of turbulence. In this new volume, Bejan explores topics and research developments that have emerged during the past decade, including the designing of convective flow and heat and mass transfer, the crucial relationship between configuration and performance, and new populations of configurations such as tapered ducts, plates with multi-scale features, and dendritic fins. Heat Transfer: Evolution, Design and Performance: Covers thermodynamics principles and establishes performance and evolution as fundamental concepts in thermal sciences Demonstrates how principles of physics predict a future with economies of scale, multi-scale design, vascularization, and hierarchical distribution of many small features Explores new work on conduction architecture, convection with nanofluids, boiling and condensation on designed surfaces, and resonance of natural circulation in enclosures Includes numerous examples, problems with solutions, and access to a companion website Heat Transfer: Evolution, Design and Performance is essential reading for undergraduate and graduate students in mechanical and chemical engineering, and for all engineers, physicists, biologists, and earth scientists.
Publisher: John Wiley & Sons
ISBN: 1119467403
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
HEAT TRANSFER Provides authoritative coverage of the fundamentals of heat transfer, written by one of the most cited authors in all of Engineering Heat Transfer presents the fundamentals of the generation, use, conversion, and exchange of heat between physical systems. A pioneer in establishing heat transfer as a pillar of the modern thermal sciences, Professor Adrian Bejan presents the fundamental concepts and problem-solving methods of the discipline, predicts the evolution of heat transfer configurations, the principles of thermodynamics, and more. Building upon his classic 1993 book Heat Transfer, the author maintains his straightforward scientific approach to teaching essential developments such as Fourier conduction, fins, boundary layer theory, duct flow, scale analysis, and the structure of turbulence. In this new volume, Bejan explores topics and research developments that have emerged during the past decade, including the designing of convective flow and heat and mass transfer, the crucial relationship between configuration and performance, and new populations of configurations such as tapered ducts, plates with multi-scale features, and dendritic fins. Heat Transfer: Evolution, Design and Performance: Covers thermodynamics principles and establishes performance and evolution as fundamental concepts in thermal sciences Demonstrates how principles of physics predict a future with economies of scale, multi-scale design, vascularization, and hierarchical distribution of many small features Explores new work on conduction architecture, convection with nanofluids, boiling and condensation on designed surfaces, and resonance of natural circulation in enclosures Includes numerous examples, problems with solutions, and access to a companion website Heat Transfer: Evolution, Design and Performance is essential reading for undergraduate and graduate students in mechanical and chemical engineering, and for all engineers, physicists, biologists, and earth scientists.
Journal of Heat Transfer
Author:
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 556
Book Description