EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Author: Hongsheng Guo
Publisher: Frontiers Media SA
ISBN: 2889666212
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description


A computational and experimental study on combustion processes in natural gas/diesel dual fuel engines

A computational and experimental study on combustion processes in natural gas/diesel dual fuel engines PDF Author: Andrew Hockett
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Dual-Fuel Diesel Engines

Dual-Fuel Diesel Engines PDF Author: Ghazi A. Karim
Publisher: CRC Press
ISBN: 1498703097
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions PDF Author: Amin Yousefi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Universal concerns about degradation in air quality, stringent emissions regulations, energy scarcity, and global warming have prompted research and development of compressed ignition engines using alternative combustion concepts. Natural gas/diesel dual-fuel combustion is an advanced combustion concept for compression ignition diesel engines, which has attracted global attention in recent years. This combustion concept is accomplished by creating reactivity stratification in the cylinder via the use of two fuels characterized by distinctly different reactivities. The low reactivity and main fuel (i.e., natural gas) is firstly premixed with air and then charged into the cylinder through the intake manifold, and the high reactivity fuel (i.e., diesel) is then injected into the charged mixture through a direct injector. This combustion concept offers prominent benefits in terms of a significant reduction of particulate matter (PM) and sometimes nitrogen oxides (NOx) emissions while maintaining comparable fuel efficiency compared to diesel engine. However, low thermal efficiency and high greenhouse gas (GHG) emissions under low load conditions are major challenges which prevented the implementation of dual-fuel concept in commercial automative engines. The present study investigates different combustion approaches with the aim to enhance combustion performance and reduce emissions of unburned methane, CO, NOx, soot, and GHG of natural gas/diesel dual-fuel engines under different engine load-speed conditions. In particular, the main focus of this thesis is on low load conditions where GHG emissions of conventional natural gas/diesel dual-fuel engine is much higher than that of conventional diesel engine. Alongside the experimental study, a computational fluid dynamic (CFD) model is developed to help understand the behaviour of natural gas/diesel dual-fuel combustion process under different engine load-speed conditions. The studied approaches showed that the fuel efficiency and GHG emissions of natural gas/diesel dual-fuel engine can be significantly improved under low engine load conditions compared to diesel engine.

An Experimental and Computational Study of Fuel Injection, Mixing and Combustion in Diesel Engines

An Experimental and Computational Study of Fuel Injection, Mixing and Combustion in Diesel Engines PDF Author: Laura M. Ricart
Publisher:
ISBN:
Category :
Languages : en
Pages : 396

Get Book Here

Book Description


Experimental investigation and performance estimate of diesel engines burning natural gas

Experimental investigation and performance estimate of diesel engines burning natural gas PDF Author:
Publisher:
ISBN:
Category :
Languages : pt-BR
Pages :

Get Book Here

Book Description
Medidas do desempenho de quatro diferentes motores, todos operandono modo bicombustível Diesel / gás natural, foram realizadas em dinamômetrode bancada. Selecionaram-se os motores a ensaiar por suas característicasconstrutivas e operacionais, representativas das distintas aplicações dos motoresDiesel (cilindrada, faixa de rotação, uso ou não da turbo-alimentação earrefecimento do ar de combustão). Variou-se a razão de substituição de Dieselpor gás natural de modo a levantar as regiões por onde a operaçãobicombustível é possível. Embora o foco do trabalho esteja sobre o desempenhotambém se tomaram dados relativos às emissões (fumaça / opacidade), tantodurante a operação original Diesel, quanto na bicombustível. Foram propostascorrelações empíricas para o rendimento térmico indicado, eficiência volumétricae atrito em motores Diesel. Podem-se usar, na falta de dados experimentaisprévios, tais correlações na estimativa do desempenho de motores diferentesdos testados. Os resultados indicam que, por grande parte dos campos defuncionamento, apenas parte do gás natural efetivamente queima. Em motoresoperando a baixa carga cerca de 20 30 % do gás fornecido passa ao coletor deescape sem reagir. Desenvolveu-se um modelo simples para a queima Diesel /gás. Parâmetros empíricos exigidos por tal modelo foram levantados com basedos pontos experimentais obtidos. Sugere-se usar tal modelo na previsão dodesempenho Diesel / gás de motores ainda não testados no modobicombustível. Os resultados sugerem que, em motores operando com razão ar /gás natural superior a, aproximadamente, 30, a queima do gás ocorre apenas noentorno do Diesel. Em misturas de razão ar / gás inferior a 30 a queima emfrentes de chama parece ocorrer. Em tais casos fica-se, também, sujeito aofuncionamento com detonação. As correlações empíricas levantadas foramutilizadas na conversão Diesel / gás natural de três diferentes grupos geradoresde eletricidade (motores de 212, 535 e 1.570 hp). De forma distinta das medidastomadas em laboratório as conversões destes geradores foram feitas em campo, sem oportunidade para a medida cuidadosa e metódica de todos os parâmetrosde interesse. Os dados verificados nas conversões de tais grupos geradores, quando considerados adequados, foram incorporados ao presente trabalho.

A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine

A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine PDF Author: Prabhat Ranjan Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Dual fuel combustion is one strategy to achieve low oxides of nitrogen and soot emissions while maintaining the fuel conversion efficiency of IC engines. However, it also suffers from high engine-out carbon monoxide and unburned hydrocarbon emissions, and the incidence of knock at high loads. The present work focused on CFD simulation of diesel-methane dual fuel combustion in a single-cylinder research engine (SCRE). For pure diesel combustion, a load sweep of 2.5 bar brake mean effective pressure (BMEP) to 7.5 bar BMEP was performed at a constant engine speed of 1500 rpm and a diesel injection pressure of 500 bar. For diesel-methane dual fuel combustion, a methane percent energy substitution sweep was performed from 30% to 90 % at 1500 rpm, 3.3 bar BMEP, 500 bar Pinj, and 355 crank angle degrees (CAD) diesel injection timing. Combustion, performance, and emissions results are presented and compared with experimental data where possible.

Modelling Diesel Combustion

Modelling Diesel Combustion PDF Author: P. A. Lakshminarayanan
Publisher: Springer Nature
ISBN: 981166742X
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.

High Power Output Operation of RCCI Combustion

High Power Output Operation of RCCI Combustion PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A computational investigation of methods to extend the upper limit of power output of reactivity controlled compression ignition (RCCI) engines was performed. The study utilized two approaches. The first approach is to increase the engine speed while maintaining a medium load. The second approach is to operate at higher loads without changing the engine speed. Iso-octane and n-heptane were used to represent the low-reactivity fuel and high-reactivity fuel, respectively. A light-duty diesel engine was modeled for the high speed dual-fuel RCCI combustion study. With high-speed operation several benefits were identified. Firstly, the peak pressure rise rates (PPRR), both crank angle-based and time-based, were reduced compared to those with low-speed operation. Secondly, at high speed the NO formation residence time became short, leading to reduced NOx emissions. Lastly, a frictional penalty analysis of high-speed operation using the Chen-Flynn model was conducted, which showed only 0.5 bar FMEP increase compared to that at low-speed. These findings indicate that high-speed RCCI is a very promising path for high-power output operation. For the high-load operation study use of dual direct-injectors was explored in order to direct-inject both fuels. Analysis of the optimum injection strategy revealed two main physical mechanisms enabling high-load operation with dual direct-injectors. The first exploited local evaporative cooling from the iso-octane injection, which delayed the iso-octane ignition. The second mechanism was related to the shorter chemical residence time of the iso-octane due to its late delivery into the cylinder. It was also noted that n-heptane's role as an ignition source could not be achieved with just iso-octane. Finally, the co-axial injector location assumption was removed by using an actual dual-injector layout. Unlike results with the co-axial injector design, the actual dual-injector layout exhibited soot and CO emission problems. In order to attempt to accommodate off-center injector locations, various injector hole patterns were tested. Although these unconventional injector hole patterns improved the emissions, it is concluded that the development of a co-axial dual-fuel injector is imperative in order to achieve clean RCCI combustion at high load.