Expansion of Physics through Nanoscience

Expansion of Physics through Nanoscience PDF Author: Wolfram Schommers
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110525593
Category : Science
Languages : en
Pages : 429

Get Book

Book Description
In contrast to other publications this work discusses Nanoscience strictly at the ultimate level where the properties of atomic matter emerge. The renowned author presents an interdisciplinary approach leading to the forefront of research of quantum-theoretical aspects of time, selforganizing nanoprocesses, brain functions, the matter-mind problem, behaviour research and philosophical questions.

Expansion of Physics through Nanoscience

Expansion of Physics through Nanoscience PDF Author: Wolfram Schommers
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110525593
Category : Science
Languages : en
Pages : 429

Get Book

Book Description
In contrast to other publications this work discusses Nanoscience strictly at the ultimate level where the properties of atomic matter emerge. The renowned author presents an interdisciplinary approach leading to the forefront of research of quantum-theoretical aspects of time, selforganizing nanoprocesses, brain functions, the matter-mind problem, behaviour research and philosophical questions.

Expansion of Physics through Nanoscience

Expansion of Physics through Nanoscience PDF Author: Wolfram Schommers
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311052466X
Category : Science
Languages : en
Pages : 423

Get Book

Book Description
In contrast to other publications this work discusses Nanoscience strictly at the ultimate level where the properties of atomic matter emerge. The renowned author presents an interdisciplinary approach leading to the forefront of research of quantum-theoretical aspects of time, selforganizing nanoprocesses, brain functions, the matter-mind problem, behaviour research and philosophical questions.

Basic Physics of Nanoscience

Basic Physics of Nanoscience PDF Author: Wolfram Schommers
Publisher: Elsevier
ISBN: 0128137193
Category : Science
Languages : en
Pages : 302

Get Book

Book Description
Basic Physics of Nanoscience: Traditional Approaches and New Aspects at the Ultimate Level deals with the description of properties at the Nano level and self-organizing quantum processes of Nano systems. The book presents the state of the art as well as theoretical discussions of future developments, beginning with simple Nano systems’ sensitivity to small variations in interaction potential compared to bulk cases, and continuing with a discussion of the structure and dynamics of Nano systems as a function of temperature. Additionally, the book analyzes self-organizing quantum processes—which are essential in the design of new Nano systems—in detail, and explores new aspects related to the quantum theoretical nature of time, leading to an expansion of the basic laws through nanotechnology. Finally, the book explores the effect of nanotechnological manipulations of brain functions and the need for the development of reliable models for the matter-mind complex. This innovative approach to understanding Nano systems makes Basic Physics of Nanoscience a vital resource for advanced students and researchers of physics, materials science, and neuroscience. • Discusses nanoscience at the ultimate level where the properties of molecular (atomic) matter emerge • Presents classical approaches in nanoscience as well as new aspects such as the quantum-physical nature of time • Features an interdisciplinary approach, including physics, behavior research, brain research, the matter–mind–problem, and philosophical implications

Nanophysics and Nanotechnology

Nanophysics and Nanotechnology PDF Author: Edward L. Wolf
Publisher: John Wiley & Sons
ISBN: 3527413243
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book

Book Description
Long awaited new edition of this highly successful textbook, provides once more a unique introduction to the concepts, techniques and applications of nanoscale systems by covering its entire spectrum up to recent findings on graphene.

New Directions in Mesoscopic Physics (Towards Nanoscience)

New Directions in Mesoscopic Physics (Towards Nanoscience) PDF Author: R. Fazio
Publisher: Springer Science & Business Media
ISBN: 1402016654
Category : Science
Languages : en
Pages : 396

Get Book

Book Description
An introduction and comprehensive survey of the main issues in mesosocopic physics. Topics covered include quantum Hall effects, transport through quantum wires and dots, coherence in mesoscopic systems, spintronics, disordered systems, and solid state quantum computation. Some contributions are dedicated to the connections between nanoscience and biophysics and quantum optics. Although the topics mentioned have many aspects in common, they span a wide area of physics. It is therefore especially important to provide a broad view of this rapidly expanding field. Thanks to the excellent presentations, the book will be found suitable both for young researchers who want to enter the field and stimulating for more experienced scientists.

21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook PDF Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1000699870
Category : Technology & Engineering
Languages : en
Pages : 987

Get Book

Book Description
This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Topics In Nanoscience (In 2 Parts)

Topics In Nanoscience (In 2 Parts) PDF Author: Wolfram Schommers
Publisher: World Scientific
ISBN: 9811256136
Category : Science
Languages : en
Pages : 872

Get Book

Book Description
With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future PDF Author: Wolfram Schommers
Publisher: World Scientific
ISBN: 9811243875
Category : Science
Languages : en
Pages : 466

Get Book

Book Description
With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook PDF Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1000699390
Category : Technology & Engineering
Languages : en
Pages : 489

Get Book

Book Description
This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Nanoelectronics

Nanoelectronics PDF Author: Joachim Knoch
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311105442X
Category : Science
Languages : en
Pages : 468

Get Book

Book Description
In recent years, nanoelectronics has become very interdisciplinary requiring students to master aspects of physics, electrical engineering, chemistry etc. The 2nd edition of this textbook is a comprehensive overview of nanoelectronics covering the necessary quantum mechanical and solid-state physics foundation, an overview of semiconductor fabrication as well as a brief introduction into device simulation using the non-equilibrium Greens function formalism. Equipped with this, the work discusses nanoscale field-effect transistors and alternative device concepts such as Schottky-barrier MOSFETs as well as steep slope transistors based on different materials. In addition, cryogenic operation of MOSFETs for the realization of, e.g., classical control electronics of semiconducting spin qubits is studied. The work contains a number of tasks, examples and exercises with step-by-step video solutions as well as tutorial videos that deepen the understanding of the material. With additional access to simulation tools that allow students to do computational experiments, the emphasis is on thorough explanation of the material enabling students to carry out their own research.