Excursions in Calculus

Excursions in Calculus PDF Author: Robert M. Young
Publisher: Cambridge University Press
ISBN: 9780883853177
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book explores the interplay between the two main currents of mathematics, the continuous and the discrete.

Excursions in Calculus

Excursions in Calculus PDF Author: Robert M. Young
Publisher: Cambridge University Press
ISBN: 9780883853177
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book explores the interplay between the two main currents of mathematics, the continuous and the discrete.

Excursions in Mathematics

Excursions in Mathematics PDF Author: C. Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486282831
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
This lively and accessible exploration of the nature of mathematics examines the role of the mathematician as well as the four major branches: number theory, algebra, geometry, and analysis.

Excursions in Classical Analysis

Excursions in Classical Analysis PDF Author: Hongwei Chen
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.

Mathematical Excursions to the World's Great Buildings

Mathematical Excursions to the World's Great Buildings PDF Author: Alexander J. Hahn
Publisher: Princeton University Press
ISBN: 1400841992
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.

Excursions in Modern Mathematics

Excursions in Modern Mathematics PDF Author: Peter Tannenbaum
Publisher: Pearson
ISBN: 9780321825735
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.

Excursions in Number Theory

Excursions in Number Theory PDF Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486257785
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.

A Tour of the Calculus

A Tour of the Calculus PDF Author: David Berlinski
Publisher: Vintage
ISBN: 030778973X
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Were it not for the calculus, mathematicians would have no way to describe the acceleration of a motorcycle or the effect of gravity on thrown balls and distant planets, or to prove that a man could cross a room and eventually touch the opposite wall. Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio. Even as he initiates us into the mysteries of real numbers, functions, and limits, Berlinski explores the furthest implications of his subject, revealing how the calculus reconciles the precision of numbers with the fluidity of the changing universe. "An odd and tantalizing book by a writer who takes immense pleasure in this great mathematical tool, and tries to create it in others."--New York Times Book Review

An Excursion through Elementary Mathematics, Volume I

An Excursion through Elementary Mathematics, Volume I PDF Author: Antonio Caminha Muniz Neto
Publisher: Springer
ISBN: 9783319538709
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.

Uncommon Mathematical Excursions

Uncommon Mathematical Excursions PDF Author: Dan Kalman
Publisher: American Mathematical Soc.
ISBN: 1470458446
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description


Computational Excursions in Analysis and Number Theory

Computational Excursions in Analysis and Number Theory PDF Author: Peter Borwein
Publisher: Springer Science & Business Media
ISBN: 0387216529
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This introduction to computational number theory is centered on a number of problems that live at the interface of analytic, computational and Diophantine number theory, and provides a diverse collection of techniques for solving number- theoretic problems. There are many exercises and open research problems included.