Evaluation of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt for Field and Laboratory-compacted Specimens

Evaluation of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt for Field and Laboratory-compacted Specimens PDF Author: Abdulaziz Alossta
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 98

Get Book Here

Book Description
A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

Evaluation of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt for Field and Laboratory-compacted Specimens

Evaluation of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt for Field and Laboratory-compacted Specimens PDF Author: Abdulaziz Alossta
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 98

Get Book Here

Book Description
A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

Evaluation of Laboratory Conditioning Protocols for Warm-Mix Asphalt

Evaluation of Laboratory Conditioning Protocols for Warm-Mix Asphalt PDF Author: Fan Yin
Publisher:
ISBN:
Category :
Languages : en
Pages : 74

Get Book Here

Book Description
Warm-Mix Asphalt (WMA) refers to the asphalt concrete paving material produced and placed at temperatures approximately 50°F lower than those used for Hot-Mix Asphalt (HMA). Economic, environmental and engineering benefits have boosted the use of WMA technology across the world during the past decade. While WMA technology has been successfully utilized as a paving material, several specifications and mix design protocols remain under development. For example, currently, there is no consistent laboratory conditioning procedure for preparing WMA specimens for performance tests, despite being essential for mix performance. Based on previous studies, several candidate conditioning protocols for WMA Laboratory Mixed Laboratory Compacted (LMLC) and off-site Plant Mixed Laboratory Compacted (PMLC) specimens were selected, and their effects on mixture properties were evaluated. Mixture stiffness evaluated in a dry condition using the Resilient Modulus (MR) test (ASTM D-7369) was the main parameter used to select a conditioning protocol to simulate pavement stiffness in its early life. The number of Superpave Gyratory Compactor (SGC) gyrations to get 7±0.5% air voids (AV) was the alternative parameter. Extracted binder stiffness and aggregate orientation of field cores and on-site PMLC specimens were evaluated using the Dynamic Shear Rheometer (DSR) (AASHTO T315) and image analysis techniques, respectively. In addition, mixture stiffness in a wet condition was evaluated using the Hamburg Wheel-Track Test (HWTT) (AASHTO T324) stripping inflection point (SIP) and rutting depth at a certain number of passes. Several conclusions are made based on test results. LMLC specimens conditioned for 2 hours at 240°F (116°C) for WMA and 275°F (135°C) for HMA had similar stiffnesses as cores collected during the early life of field pavements. For off-site PMLC specimens, different conditioning protocols are recommended to simulate stiffnesses of on-site PMLC specimens: reheat to 240°F (116°C) for WMA with additives and reheat to 275°F (135°C) for HMA and foamed WMA. Additionally, binder stiffness, aggregate orientation, and overall AV had significant effects on mixture stiffness. Mixture stiffness results for PMFC cores and on-site PMLC specimens in a wet condition as indicated by HWTT agree with those in a dry condition in MR testing. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148143

Evaluation of Warm Mix Asphalt Technologies with Respect to Binder Aging and Emissions

Evaluation of Warm Mix Asphalt Technologies with Respect to Binder Aging and Emissions PDF Author: Faramarz Farshidi
Publisher:
ISBN: 9781267758804
Category :
Languages : en
Pages :

Get Book Here

Book Description
In recent years Warm Mix Asphalt (WMA) technologies have been used to modify asphalt binders, with the following objectives: to decrease production and construction temperatures, reduce fumes and emissions, increase haul distance, and improve the workability of the mix. Reduced temperatures at the plant and during laydown and compaction are hypothesized to positively impact long-term oxidative aging behavior due to less oxidation/aging and result in less emissions during production and construction due to reduced production and construction temperatures. The purpose of this investigation was to quantify these improvements with respect to long-term oxidative aging in the field and environmental benefits with respect to volatile organic compounds, semi-volatile organic compounds and poly cyclic aromatic hydrocarbons in order to confirm or deny this hypothesis. This research evaluated the potential durability of WMA and Rubberized Warm Mix Asphalt (R-WMA) binders with respect to long-term aging through characterization of field-aged binders extracted and recovered from field cores. The results were compared to the control conventional Hot Mix Asphalt (HMA) and Rubberized Hot Mix Asphalt (R-HMA) samples. Binders were extracted and recovered from thirteen different test sections and a total of seven different WMA technologies were evaluated in this study. The Dynamic Shear Rheometer (DSR) was used to evaluate the rheological properties of the binders at high temperatures with respect to rutting performance in the field. The Bending Beam Rheometer (BBR) was used to characterize low temperature properties of the binder samples. A new testing procedure was developed to measure and characterize the rheological properties of the R-HMA and R-WMA binders with respect to performance-related properties in the field. The rheological results indicated that depending on the WMA technology used, the addition of WMA technologies and reduced production and compaction temperatures result in increase or decrease rutting resistance performance for WMA and R-WMA binders with respect to permanent deformation at high temperatures in the field. Both WMA and R-WMA binders studied meet the established thermal cracking criteria with respect to low temperature cracking in the field. The aging kinetics curves for WMA-treated binders are parallel to the control binders and the addition of WMA technologies including organic, chemical and mechanical foaming technologies studied in this research did not result in a different aging kinetics trend with respect to long-term aging in the field. A portable "flux" chamber was designed and fabricated to capture and directly measure emissions during paving operations. Emissions were collected in activated charcoal sorbent tubes for characterizing volatile organic compounds and semi-volatile organic compounds. XAD-2 resin tubes and filters were used to capture the gaseous phase and particulate phase of the PAH compounds, respectively. A reliable analytical method was developed to identify and quantify alkane emissions using gas chromatography mass spectrometry (GC/MS) in the laboratory. A separate method was developed for identification and characterization of trace level PAH compounds of the asphalt fumes. The results demonstrated that the warm mix asphalt technology type, plant mixing temperature and level of compaction significantly influence the emission characteristics throughout paving operations. Moreover, the emissions kinetics indicated that the majority of the reactive organic gases are volatilized in the first hour after sampling initiation (immediately after production and before compaction). To better understand and identify any chemical composition changes of the binder due to WMA technologies, nuclear magnetic resonance spectroscopy (NMR) was used for understanding structural complexities of HMA and WMA binder molecules. Qualitative analysis of both carbon and hydrogen atoms with HMA and WMA binders showed that the molecular structures of the binders are not significantly changed by the effect of WMA technologies.

Mix Design Practices for Warm Mix Asphalt

Mix Design Practices for Warm Mix Asphalt PDF Author: Ramon Francis Bonaquist
Publisher: Transportation Research Board
ISBN: 0309155592
Category : Science
Languages : en
Pages : 111

Get Book Here

Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 691: Mix Design Practices for Warm-Mix Asphalt explores a mix design method tailored to the unique material properties of warm mix asphalt technologies. Warm mix asphalt (WMA) refers to asphalt concrete mixtures that are produced at temperatures approximately 50°F (28°C) or more cooler than typically used in the production of hot mix asphalt (HMA). The goal of WMA is to produce mixtures with similar strength, durability, and performance characteristics as HMA using substantially reduced production temperatures. There are important environmental and health benefits associated with reduced production temperatures including lower greenhouse gas emissions, lower fuel consumption, and reduced exposure of workers to asphalt fumes. Lower production temperatures can also potentially improve pavement performance by reducing binder aging, providing added time for mixture compaction, and allowing improved compaction during cold weather paving. Appendices to NCHRP Report 691 include the following. Appendices A, B, and D are included in the printed and PDF version of the report. Appendices C and E are available only online.

Performance Assessment of Warm Mix Asphalt (WMA) Pavements

Performance Assessment of Warm Mix Asphalt (WMA) Pavements PDF Author:
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 138

Get Book Here

Book Description
Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform binder coating of aggregate which should reduce mix surface aging, and extended construction season in temperate climates. Three WMA techniques, Aspha-min, Sasobit, and Evotherm, were used to reduce the viscosity of the asphalt binder at certain temperatures and to dry and fully coat the aggregates at a lower production temperature than conventional hot mix asphalt. The reduction in mixing and compaction temperatures of asphalt mixtures leads to a reduction in both fuel consumption and emissions. This research project had two major components, the outdoor field study on SR541 in Guernsey County and the indoor study in the Accelerated Pavement Load Facility (APLF). Each study included the application of four types of asphalt surface layer, including standard hot mix asphalt as a control and three warm mixes: Evotherm, Aspha-min, and Sasobit. The outdoor study began with testing of the preexisting pavement and subgrade, the results of which indicated that while the pavement and subgrade were not uniform, there were no significant problems or variations that would be expected to lead to differences in performance of the planned test sections. During construction, the outdoor study included collection of emissions samples at the plant and on the construction site as well as thermal readings from the site. Afterwards, the outdoor study included the periodic collection and laboratory analysis of core samples and visual inspections of the road. Roughness (IRI) measurements were made shortly after construction and after a year of service. The indoor study involved the construction of four lanes of perpetual pavement, each topped with one of the test mixes. The lanes were further divided into northern and southern halves, with the northern halves having a full 16 in (40 cm) perpetual pavement, and with the southern halves with thicknesses decreasing in one in (2.5 cm) increments by reducing the intermediate layer. The dense graded aggregate base was increased to compensate for the change in pavement thickness. The southern half of each lane was instrumented to measure temperature, subgrade pressure, deflection relative to top of subgrade and to a point 5 ft (1.5 m) down, and longitudinal and transverse strains at the base of the fatigue resistance layer (FRL). The APLF had the temperature set to 40°F (4.4°C), 70°F (21.1°C), and 104°F (40°C), in that order. At each temperature, rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) were applied at lateral shifts of 3 in (76 mm), 1 in (25 mm), -4 in ( -102 mm), and -9 in ( - 229 mm) and the response measured. Then each plane was subjected to 10,000 passes of the rolling wheel load of 9000 lb (40 kN) at about 5 mph (8 km/h). Profiles were measured after 100, 300, 1000, 3000, and 10,000 passes with a profilometer to assess consolidation of each surface. After the 10,000 passes of the rolling wheel load were completed, a second set of measurements was made under rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) at the same lateral shifts as before. Additionally, the response of the pavement instrumentation was recorded during drops of a Falling Weight Deflectometer (FWD).

Evaluation of Warm Mix Asphalt Mixtures Containing RAP Using Accelerated Loading Tests

Evaluation of Warm Mix Asphalt Mixtures Containing RAP Using Accelerated Loading Tests PDF Author: Munir D. Nazzal
Publisher:
ISBN:
Category : Accelerated loading tests
Languages : en
Pages : 8

Get Book Here

Book Description
This paper presents the results of a study that was conducted to evaluate the performance and constructability of warm mix asphalt (WMA) mixtures containing reclaimed asphalt pavement (RAP). Four sections were constructed at the indoor Accelerated Pavement Loading Facility at Ohio University. Aspha-min, Sasobit, and Evotherm WMA mixtures were used in the wearing course layer of the first three sections. In addition, the fourth section had a conventional hot mix asphalt (HMA) mixture, which was used as a control. Temperature was monitored during the production, placement, and compaction of WMA and HMA mixtures. Furthermore, emission tests were conducted at the asphalt plants during the production of each of the evaluated mixtures. Falling weight deflectometer (FWD) and rolling wheel tests were conducted at different temperatures on all evaluated sections. The results of this study showed that emissions were reduced during the production of the Aspha-min and Sasobit WMA mixtures by at least 50 % for volatile organic compounds, 60 % for carbon monoxide, 20 % for nitrogen oxides, and 83 % for sulfur dioxide, when compared to the control HMA mixture. In addition, although WMA mixtures were produced and compacted at much lower temperatures, they achieved better field densities than the control HMA mixture. The FWD test results showed that at 40°F (4°C) test temperature, the control HMA mixture had significantly lower stiffness than that of the WMA mixtures. However, the FWD stiffness measurement of the HMA and the WMA mixtures were statistically indistinguishable at the intermediate and high test temperatures of 70°F (21.1°C) and 104°F (40°C), respectively. Finally, the rolling wheel test results indicated that the three WMA sections, especially the Evotherm section, exhibited more rutting than the control HMA section during the post primary compaction stage. However, the rutting rate of the HMA section was higher than those of the WMA sections in the secondary stage, which suggests that the rutting difference may slowly be mitigated.

Laboratory Evaluation of Warm Mix Asphalt

Laboratory Evaluation of Warm Mix Asphalt PDF Author: Zhanping Yuo
Publisher:
ISBN:
Category : Asphalt emulsion mixtures
Languages : en
Pages : 0

Get Book Here

Book Description
Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between 280° F (138° C) and 320° F (160° C), resulting in high energy (fuel) costs and generation of greenhouse gases. The goal for Warm Mix Asphalt (WMA) is to use existing HMA plants and specifications to produce quality dense graded mixtures at significantly lower temperatures. Europeans are using WMA technologies that allow the mixture to be placed at temperatures as low as 250° F (121° C). It is reported that energy savings on the order of 30%, with a corresponding reduction in CO2 emissions of 30%, are realized when WMA is used compared to conventional HMA. Although numerous studies have been conducted on WMA, only limited laboratory experiments are available and most of the current WMA laboratory test results are inconsistent and not compatible with field performance The main objectives of this study are: The main objectives of this study are: 1) review and synthesize information on the available WMA technologies; 2) measure the complex/dynamic modulus of WMA and the control mixtures (HMA) for comparison purpose and for use in mechanistic-empirical (ME) design comparison; 3) assess the rutting and fatigue potential of WMA mixtures; and 4) provide recommendation for the proper WMA for use in Michigan considering the aggregate, binder, and climatic factors. The testing results indicated that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. In addition, the WMA design framework was developed based on the testing results, and presented in this study to allow contractors and state agencies to successfully design WMA around the state of Michigan.

Laboratory Evaluation of Warm Mix Asphalt Influence on Theoretical Maximum Specific Gravity

Laboratory Evaluation of Warm Mix Asphalt Influence on Theoretical Maximum Specific Gravity PDF Author: Jianhua Yu
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 8

Get Book Here

Book Description
Warm mix asphalt (WMA) technology provides sufficient workability for asphalt mixtures at reduced mixing and compaction temperatures. Depending on the WMA technology, the typical temperature reduction range is 20 °C to 55 °C below hot mix asphalt (HMA) production temperatures. WMA involves chemical and wax additives that are added to an asphalt binder or incorporated through the use of foaming technology. The main advantages of WMA are reduced emissions and a reduction in combustible fuel consumption. Ongoing WMA research projects have documented some differences between HMA and WMA mixes, prompting numerous research projects that are investigating these concerns. The purpose of this research is to evaluate the volumetric properties by directly comparing laboratory produced WMA and HMA mixes. This study investigates the impact of WMA additives on the volumetric properties, specifically, the theoretical maximum specific gravity (Gmm). The Gmm testing followed the procedure of ASTM D2041. Two mix designs with HMA binder were produced, one without recycled asphalt pavement (RAP) and the other with 30 % RAP. After the mix designs were completed, no additional changes were made to account for the addition of the WMA technology. The mixes included the WMA technologies Sasobit and Advera, as well as an HMA control, for a total of six different laboratory produced mixes. Each mix was produced at 120 °C, 135 °C, and 150 °C, and each mix was oven cured for 1, 2, and 4 h. The test results were analyzed using statistical principles to determine whether differences in the Gmm values were statistically significant. The results show that temperature has little impact on Gmm. Gmm was not affected by curing times of 1 and 2 h, but the longer curing time of 4 h resulted in a statistically significant increase in Gmm. Further analysis revealed that the mix sensitivity to curing time depends on the amount of RAP in the mix. For the mix designs studied, the Advera Gmm values were similar to the HMA values, but the Sasobit Gmm values were statistically lower than the Advera values.

Short-term Laboratory Conditioning of Asphalt Mixtures

Short-term Laboratory Conditioning of Asphalt Mixtures PDF Author: David Newcomb
Publisher:
ISBN:
Category : Asphalt
Languages : en
Pages : 196

Get Book Here

Book Description
This report develops procedures and associated criteria for laboratory conditioning of asphalt mixtures to simulate short-term aging. The report presents proposed changes to the American Association of State Highway and Transportation Officials (AASHTO) R 30, Mixture Conditioning of Hot-Mix Asphalt (HMA), and a proposed AASHTO practice for conducting plant aging studies. The report will be of immediate interest to materials engineers in state highway agencies and the construction industry with responsibility for design and production of hot and warm mix asphalt.

A Synthesis of Warm Mix Asphalt

A Synthesis of Warm Mix Asphalt PDF Author: Joe W. Button
Publisher:
ISBN:
Category : Pavements, Asphalt concrete
Languages : en
Pages : 96

Get Book Here

Book Description