Author: Giampiero Esposito
Publisher: Springer Science & Business Media
ISBN: 9401158061
Category : Science
Languages : en
Pages : 334
Book Description
This book reflects our own struggle to understand the semiclassical behaviour of quantized fields in the presence of boundaries. Along many years, motivated by the problems of quantum cosmology and quantum field theory, we have studied in detail the one-loop properties of massless spin-l/2 fields, Euclidean Maxwell the ory, gravitino potentials and Euclidean quantum gravity. Hence our book begins with a review of the physical and mathematical motivations for studying physical theories in the presence of boundaries, with emphasis on electrostatics, vacuum v Maxwell theory and quantum cosmology. We then study the Feynman propagator in Minkowski space-time and in curved space-time. In the latter case, the corre sponding Schwinger-DeWitt asymptotic expansion is given. The following chapters are devoted to the standard theory of the effective action and the geometric im provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory. For this purpose, we study in detail Dirichlet, Neumann and Robin boundary conditions for scalar fields, local and non-local boundary conditions for massless spin-l/2 fields, mixed boundary conditions for gauge fields and gravitation. This is the content of Part I. Part II presents our investigations of Euclidean Maxwell theory, simple super gravity and Euclidean quantum gravity.
Euclidean Quantum Gravity on Manifolds with Boundary
Author: Giampiero Esposito
Publisher: Springer Science & Business Media
ISBN: 9401158061
Category : Science
Languages : en
Pages : 334
Book Description
This book reflects our own struggle to understand the semiclassical behaviour of quantized fields in the presence of boundaries. Along many years, motivated by the problems of quantum cosmology and quantum field theory, we have studied in detail the one-loop properties of massless spin-l/2 fields, Euclidean Maxwell the ory, gravitino potentials and Euclidean quantum gravity. Hence our book begins with a review of the physical and mathematical motivations for studying physical theories in the presence of boundaries, with emphasis on electrostatics, vacuum v Maxwell theory and quantum cosmology. We then study the Feynman propagator in Minkowski space-time and in curved space-time. In the latter case, the corre sponding Schwinger-DeWitt asymptotic expansion is given. The following chapters are devoted to the standard theory of the effective action and the geometric im provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory. For this purpose, we study in detail Dirichlet, Neumann and Robin boundary conditions for scalar fields, local and non-local boundary conditions for massless spin-l/2 fields, mixed boundary conditions for gauge fields and gravitation. This is the content of Part I. Part II presents our investigations of Euclidean Maxwell theory, simple super gravity and Euclidean quantum gravity.
Publisher: Springer Science & Business Media
ISBN: 9401158061
Category : Science
Languages : en
Pages : 334
Book Description
This book reflects our own struggle to understand the semiclassical behaviour of quantized fields in the presence of boundaries. Along many years, motivated by the problems of quantum cosmology and quantum field theory, we have studied in detail the one-loop properties of massless spin-l/2 fields, Euclidean Maxwell the ory, gravitino potentials and Euclidean quantum gravity. Hence our book begins with a review of the physical and mathematical motivations for studying physical theories in the presence of boundaries, with emphasis on electrostatics, vacuum v Maxwell theory and quantum cosmology. We then study the Feynman propagator in Minkowski space-time and in curved space-time. In the latter case, the corre sponding Schwinger-DeWitt asymptotic expansion is given. The following chapters are devoted to the standard theory of the effective action and the geometric im provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory. For this purpose, we study in detail Dirichlet, Neumann and Robin boundary conditions for scalar fields, local and non-local boundary conditions for massless spin-l/2 fields, mixed boundary conditions for gauge fields and gravitation. This is the content of Part I. Part II presents our investigations of Euclidean Maxwell theory, simple super gravity and Euclidean quantum gravity.
Quantum Gravity in Four Dimensions
Author: Giampiero Esposito
Publisher: Nova Publishers
ISBN: 9781590330005
Category : Science
Languages : en
Pages : 176
Book Description
Main section headings: Ideas and Problems in Quantum Gravity; On Ellipticity and Quantum Gravity; Non-Local Boundary Data in Quantum Gravity; Non-Locality and Ellipticity for Gauge Theories; New Kernels in Quantum Gravity; Quantum Gravity from First Principles; Quantum Gravity and Spectral Geometry; Bibliography; Index.
Publisher: Nova Publishers
ISBN: 9781590330005
Category : Science
Languages : en
Pages : 176
Book Description
Main section headings: Ideas and Problems in Quantum Gravity; On Ellipticity and Quantum Gravity; Non-Local Boundary Data in Quantum Gravity; Non-Locality and Ellipticity for Gauge Theories; New Kernels in Quantum Gravity; Quantum Gravity from First Principles; Quantum Gravity and Spectral Geometry; Bibliography; Index.
Casimir Effect 50 Years Later,the - Proceedings Of The Fourth Workshop On Quantum Field Theory Under The Influence Of External Conditions
Author: Michael Bordag
Publisher: World Scientific
ISBN: 9814543853
Category :
Languages : en
Pages : 410
Book Description
This volume contains papers based on talks delivered at the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions. This series of workshops, held at the Institute for Theoretical Physics of the University of Leipzig, was launched in 1989. The present meeting took place 50 years after Hendrik B Casimir discovered the effect named after him. This effect was found by Casimir in investigating the retarded long range van der Waals forces in colloids and re-expressing them as a change in the vacuum energy of the electromagnetic field. The story of why this work was done was told by Casimir himself at the workshop. A historical account of the development of vacuum energy in quantum theory starting from Planck's half quanta was given by H Rechenberg. Another interesting topic was about a possible explanation of sonoluminescence as a dynamical Casimir effect. Kim Milton reported on the work done by Julian Schwinger on this topic during the last years of the great physicist's life, as well as on his own research. M Bordag (Leipzig) provided a general analysis of the ultraviolet divergences of the vacuum energy of a dielectric sphere.The Casimir effect had been experimentally verified 10 years after its discovery on a rather qualitative level. Only last year and in another experiment this year, it became also quantitatively well established. It turned out to be of unexpectedly high sensitivity with respect to the presence of the so-called fifth forces, as V Mostepanenko showed in his talk.Modern methods of computing the Casimir effect rely on zeta functional regularization and heat kernel expansion. This mathematical background, together with a broader embedding into expansions of various spectral quantities, was the subject of the talk by S Fulling. Recent progress in the computation of the heat kernel coefficients was reported by V Kornyak and K Kirsten.A number of talks were devoted to magnetic background fields of various types; for instance, new trends in the Aharonov-Bohm effect. In cosmology, negative energy densities and the role of adiabatic vacuum states in a de Sitter universe were discussed.
Publisher: World Scientific
ISBN: 9814543853
Category :
Languages : en
Pages : 410
Book Description
This volume contains papers based on talks delivered at the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions. This series of workshops, held at the Institute for Theoretical Physics of the University of Leipzig, was launched in 1989. The present meeting took place 50 years after Hendrik B Casimir discovered the effect named after him. This effect was found by Casimir in investigating the retarded long range van der Waals forces in colloids and re-expressing them as a change in the vacuum energy of the electromagnetic field. The story of why this work was done was told by Casimir himself at the workshop. A historical account of the development of vacuum energy in quantum theory starting from Planck's half quanta was given by H Rechenberg. Another interesting topic was about a possible explanation of sonoluminescence as a dynamical Casimir effect. Kim Milton reported on the work done by Julian Schwinger on this topic during the last years of the great physicist's life, as well as on his own research. M Bordag (Leipzig) provided a general analysis of the ultraviolet divergences of the vacuum energy of a dielectric sphere.The Casimir effect had been experimentally verified 10 years after its discovery on a rather qualitative level. Only last year and in another experiment this year, it became also quantitatively well established. It turned out to be of unexpectedly high sensitivity with respect to the presence of the so-called fifth forces, as V Mostepanenko showed in his talk.Modern methods of computing the Casimir effect rely on zeta functional regularization and heat kernel expansion. This mathematical background, together with a broader embedding into expansions of various spectral quantities, was the subject of the talk by S Fulling. Recent progress in the computation of the heat kernel coefficients was reported by V Kornyak and K Kirsten.A number of talks were devoted to magnetic background fields of various types; for instance, new trends in the Aharonov-Bohm effect. In cosmology, negative energy densities and the role of adiabatic vacuum states in a de Sitter universe were discussed.
Geometrical Aspects Of Quantum Fields - Proceedings Of The 2000 Londrina Workshop
Author: Andrei A Bytsenko
Publisher: World Scientific
ISBN: 981449187X
Category : Science
Languages : en
Pages : 213
Book Description
This volume presents the following topics: non-Abelian Toda models, brief remarks for physicists on equivariant cohomology and the Duistermaat-Heckman formula, Casimir effect, quantum groups and their application to nuclear physics, quantum field theory, quantum gravity and the theory of extended objects, and black hole physics and cosmology.
Publisher: World Scientific
ISBN: 981449187X
Category : Science
Languages : en
Pages : 213
Book Description
This volume presents the following topics: non-Abelian Toda models, brief remarks for physicists on equivariant cohomology and the Duistermaat-Heckman formula, Casimir effect, quantum groups and their application to nuclear physics, quantum field theory, quantum gravity and the theory of extended objects, and black hole physics and cosmology.
Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm
Author: Sumanta Chakraborty
Publisher: Springer
ISBN: 3319637339
Category : Science
Languages : en
Pages : 268
Book Description
This thesis explores the connection between gravity and thermodynamics and provides a unification scheme that opens up new directions of exploration. Further elaborating on the Hawking effect and the possibility of singularity avoidance, the author not only discusses the information loss paradox at a broader level but also provides a possible solution to it. As the final frontier, it describes some novel effects arising from the microscopic structure of spacetime. Taken as a whole, the thesis addresses three major research areas in gravitational physics: it starts with classical gravity, proceeds to the black hole information loss paradox, and closes with Planck scale physics. The thesis is written in a lucid and pedagogical style, with an introduction accessible to researchers from other branches of physics and a d iscussion presenting open questions and future directions, which will benefit and hopefully inspire next-generation researchers.
Publisher: Springer
ISBN: 3319637339
Category : Science
Languages : en
Pages : 268
Book Description
This thesis explores the connection between gravity and thermodynamics and provides a unification scheme that opens up new directions of exploration. Further elaborating on the Hawking effect and the possibility of singularity avoidance, the author not only discusses the information loss paradox at a broader level but also provides a possible solution to it. As the final frontier, it describes some novel effects arising from the microscopic structure of spacetime. Taken as a whole, the thesis addresses three major research areas in gravitational physics: it starts with classical gravity, proceeds to the black hole information loss paradox, and closes with Planck scale physics. The thesis is written in a lucid and pedagogical style, with an introduction accessible to researchers from other branches of physics and a d iscussion presenting open questions and future directions, which will benefit and hopefully inspire next-generation researchers.
Euclidean Quantum Gravity
Author: G. W. Gibbons
Publisher: World Scientific
ISBN: 9789810205164
Category : Science
Languages : en
Pages : 604
Book Description
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
Publisher: World Scientific
ISBN: 9789810205164
Category : Science
Languages : en
Pages : 604
Book Description
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
Relativity and the Dimensionality of the World
Author: Vesselin Petkov
Publisher: Springer Science & Business Media
ISBN: 1402063172
Category : Science
Languages : en
Pages : 283
Book Description
The main focus of this volume is the question: is spacetime nothing more than a mathematical space (which describes the evolution in time of the ordinary three-dimensional world) or is it a mathematical model of a real four-dimensional world with time entirely given as the fourth dimension? The book contains fourteen invited papers which either directly address the main question of the nature of spacetime or explore issues related to it.
Publisher: Springer Science & Business Media
ISBN: 1402063172
Category : Science
Languages : en
Pages : 283
Book Description
The main focus of this volume is the question: is spacetime nothing more than a mathematical space (which describes the evolution in time of the ordinary three-dimensional world) or is it a mathematical model of a real four-dimensional world with time entirely given as the fourth dimension? The book contains fourteen invited papers which either directly address the main question of the nature of spacetime or explore issues related to it.
Theory of the Electron
Author: J. Keller
Publisher: Springer Science & Business Media
ISBN: 0792368193
Category : Science
Languages : en
Pages : 272
Book Description
In the first century after its discovery, the electron has come to be a fundamental element in the analysis of physical aspects of nature. This book is devoted to the construction of a deductive theory of the electron, starting from first principles and using a simple mathematical tool, geometric analysis. Its purpose is to present a comprehensive theory of the electron to the point where a connection can be made with the main approaches to the study of the electron in physics. The introduction describes the methodology. Chapter 2 presents the concept of space-time-action relativity theory and in chapter 3 the mathematical structures describing action are analyzed. Chapters 4, 5, and 6 deal with the theory of the electron in a series of aspects where the geometrical analysis is more relevant. Finally in chapter 7 the form of geometrical analysis used in the book is presented to elucidate the broad range of topics which are covered and the range of mathematical structures which are implicitly or explicitly included. The book is directed to two different audiences of graduate students and research scientists: primarily to theoretical physicists in the field of electron physics as well as those in the more general field of quantum mechanics, elementary particle physics, and general relativity; secondly, to mathematicians in the field of geometric analysis.
Publisher: Springer Science & Business Media
ISBN: 0792368193
Category : Science
Languages : en
Pages : 272
Book Description
In the first century after its discovery, the electron has come to be a fundamental element in the analysis of physical aspects of nature. This book is devoted to the construction of a deductive theory of the electron, starting from first principles and using a simple mathematical tool, geometric analysis. Its purpose is to present a comprehensive theory of the electron to the point where a connection can be made with the main approaches to the study of the electron in physics. The introduction describes the methodology. Chapter 2 presents the concept of space-time-action relativity theory and in chapter 3 the mathematical structures describing action are analyzed. Chapters 4, 5, and 6 deal with the theory of the electron in a series of aspects where the geometrical analysis is more relevant. Finally in chapter 7 the form of geometrical analysis used in the book is presented to elucidate the broad range of topics which are covered and the range of mathematical structures which are implicitly or explicitly included. The book is directed to two different audiences of graduate students and research scientists: primarily to theoretical physicists in the field of electron physics as well as those in the more general field of quantum mechanics, elementary particle physics, and general relativity; secondly, to mathematicians in the field of geometric analysis.
Causality and Locality in Modern Physics
Author: G. Hunter
Publisher: Springer Science & Business Media
ISBN: 9401709904
Category : Science
Languages : en
Pages : 492
Book Description
The Symposium entitled: Causality and Locality in Modern Physics and As tronomy: Open Questions and Possible Solutions was held at York University, Toronto, during the last week of August 1997. It was a sequel to a similar sym posium entitled: The Present Status of the Quantum Theory of Light held at the same venue in August 1995. These symposia came about as a result of discussions between Professor Stanley Jeffers and colleagues on the International Organizing Committee. Professor Jeffers was the executive local organizer of the symposia. The 1997 symposium attracted over 120 participants representing 26 different countries and academic institutions. The broad theme of both symposia was the enigma of modern physics: the non-local, and possibly superluminal interactions implied by quantum mechanics, the structure of fundamental particles including the photon, the reconciliation of quantum mechanics with the theory of relativity, and the nature of gravity and inertia. Jean-Pierre Vigier was the guest of honour at both symposia. He was a lively contributor to the discussions of the presentations. The presentations were made as 30-minute lectures, or during an evening poster session. Some participants did not submit a written account of their presentation at the symposium, and not all of the articles submitted for the Proceedings could be included because of the publisher's page limit. The titles and authors of the papers that had to be excluded are listed in an appendix.
Publisher: Springer Science & Business Media
ISBN: 9401709904
Category : Science
Languages : en
Pages : 492
Book Description
The Symposium entitled: Causality and Locality in Modern Physics and As tronomy: Open Questions and Possible Solutions was held at York University, Toronto, during the last week of August 1997. It was a sequel to a similar sym posium entitled: The Present Status of the Quantum Theory of Light held at the same venue in August 1995. These symposia came about as a result of discussions between Professor Stanley Jeffers and colleagues on the International Organizing Committee. Professor Jeffers was the executive local organizer of the symposia. The 1997 symposium attracted over 120 participants representing 26 different countries and academic institutions. The broad theme of both symposia was the enigma of modern physics: the non-local, and possibly superluminal interactions implied by quantum mechanics, the structure of fundamental particles including the photon, the reconciliation of quantum mechanics with the theory of relativity, and the nature of gravity and inertia. Jean-Pierre Vigier was the guest of honour at both symposia. He was a lively contributor to the discussions of the presentations. The presentations were made as 30-minute lectures, or during an evening poster session. Some participants did not submit a written account of their presentation at the symposium, and not all of the articles submitted for the Proceedings could be included because of the publisher's page limit. The titles and authors of the papers that had to be excluded are listed in an appendix.
Black Holes, Gravitational Radiation and the Universe
Author: B.R. Iyer
Publisher: Springer Science & Business Media
ISBN: 9401709343
Category : Science
Languages : en
Pages : 581
Book Description
Our esteemed colleague C. V. Vishveshwara, popularly known as Vishu, turned sixty on 6th March 1998. His colleagues and well wishers felt that it would be appropriate to celebrate the occasion by bringing out a volume in his honour. Those of us who have had the good fortune to know Vishu, know that he is unique, in a class by himself. Having been given the privilege to be the volume's editors, we felt that we should attempt something different in this endeavour. Vishu is one of the well known relativists from India whose pioneer ing contributions to the studies of black holes is universally recognised. He was a student of Charles Misner. His Ph. D. thesis on the stability of the Schwarzschild black hole, coordinate invariant characterisation of the sta tionary limit and event horizon for Kerr black holes and subsequent seminal work on quasi-normal modes of black holes have passed on to become the starting points for detailed mathematical investigations on the nature of black holes. He later worked on other aspects related to black holes and compact objects. Many of these topics have matured over the last thirty years. New facets have also developed and become current areas of vigorous research interest. No longer are black holes, ultracompact objects or event horizons mere idealisations of mathematical physicists but concrete entities that astrophysicists detect, measure and look for. Astrophysical evidence is mounting up steadily for black holes.
Publisher: Springer Science & Business Media
ISBN: 9401709343
Category : Science
Languages : en
Pages : 581
Book Description
Our esteemed colleague C. V. Vishveshwara, popularly known as Vishu, turned sixty on 6th March 1998. His colleagues and well wishers felt that it would be appropriate to celebrate the occasion by bringing out a volume in his honour. Those of us who have had the good fortune to know Vishu, know that he is unique, in a class by himself. Having been given the privilege to be the volume's editors, we felt that we should attempt something different in this endeavour. Vishu is one of the well known relativists from India whose pioneer ing contributions to the studies of black holes is universally recognised. He was a student of Charles Misner. His Ph. D. thesis on the stability of the Schwarzschild black hole, coordinate invariant characterisation of the sta tionary limit and event horizon for Kerr black holes and subsequent seminal work on quasi-normal modes of black holes have passed on to become the starting points for detailed mathematical investigations on the nature of black holes. He later worked on other aspects related to black holes and compact objects. Many of these topics have matured over the last thirty years. New facets have also developed and become current areas of vigorous research interest. No longer are black holes, ultracompact objects or event horizons mere idealisations of mathematical physicists but concrete entities that astrophysicists detect, measure and look for. Astrophysical evidence is mounting up steadily for black holes.