Author: Steven Alan Cryer
Publisher:
ISBN:
Category :
Languages : en
Pages : 628
Book Description
Equilibrium Shapes and Rupture Dynamics of a Soap-film Bridge
Author: Steven Alan Cryer
Publisher:
ISBN:
Category :
Languages : en
Pages : 628
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 628
Book Description
Film Rupture Caused by Dynamic Effects in the Plateau Border Region
Author: Steven Alan Cryer
Publisher:
ISBN:
Category : Liquid films
Languages : en
Pages : 338
Book Description
Publisher:
ISBN:
Category : Liquid films
Languages : en
Pages : 338
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 684
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 684
Book Description
Faculties, Publications, and Doctoral Theses in Chemistry and Chemical Engineering at United States Universities
Author: American Chemical Society. Committee on Professional Training
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 1646
Book Description
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 1646
Book Description
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 760
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 760
Book Description
The Science of Soap Films and Soap Bubbles
Author: Cyril Isenberg
Publisher: Courier Dover Publications
ISBN: 9780486269603
Category : Games & Activities
Languages : en
Pages : 244
Book Description
Superb treatment of molecular and macroscopic properties of soap films and bubbles, emphasizing solutions of physical problems. Over 120 black-and-white illustrations, 41 color photographs.
Publisher: Courier Dover Publications
ISBN: 9780486269603
Category : Games & Activities
Languages : en
Pages : 244
Book Description
Superb treatment of molecular and macroscopic properties of soap films and bubbles, emphasizing solutions of physical problems. Over 120 black-and-white illustrations, 41 color photographs.
Singularities: Formation, Structure and Propagation
Author: J. Eggers
Publisher: Cambridge University Press
ISBN: 1107098416
Category : Mathematics
Languages : en
Pages : 471
Book Description
This book explores a wide range of singular phenomena, providing mathematical tools for understanding them and highlighting their common features.
Publisher: Cambridge University Press
ISBN: 1107098416
Category : Mathematics
Languages : en
Pages : 471
Book Description
This book explores a wide range of singular phenomena, providing mathematical tools for understanding them and highlighting their common features.
Intermolecular and Surface Forces
Author: Jacob N. Israelachvili
Publisher: Academic Press
ISBN: 0123919339
Category : Science
Languages : en
Pages : 708
Book Description
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
Publisher: Academic Press
ISBN: 0123919339
Category : Science
Languages : en
Pages : 708
Book Description
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
The Cognitive-Theoretic Model of the Universe: A New Kind of Reality Theory
Author: Christopher Michael Langan
Publisher: Mega Foundation Press
ISBN: 0971916225
Category : Philosophy
Languages : en
Pages : 94
Book Description
Paperback version of the 2002 paper published in the journal Progress in Information, Complexity, and Design (PCID). ABSTRACT Inasmuch as science is observational or perceptual in nature, the goal of providing a scientific model and mechanism for the evolution of complex systems ultimately requires a supporting theory of reality of which perception itself is the model (or theory-to-universe mapping). Where information is the abstract currency of perception, such a theory must incorporate the theory of information while extending the information concept to incorporate reflexive self-processing in order to achieve an intrinsic (self-contained) description of reality. This extension is associated with a limiting formulation of model theory identifying mental and physical reality, resulting in a reflexively self-generating, self-modeling theory of reality identical to its universe on the syntactic level. By the nature of its derivation, this theory, the Cognitive Theoretic Model of the Universe or CTMU, can be regarded as a supertautological reality-theoretic extension of logic. Uniting the theory of reality with an advanced form of computational language theory, the CTMU describes reality as a Self Configuring Self-Processing Language or SCSPL, a reflexive intrinsic language characterized not only by self-reference and recursive self-definition, but full self-configuration and self-execution (reflexive read-write functionality). SCSPL reality embodies a dual-aspect monism consisting of infocognition, self-transducing information residing in self-recognizing SCSPL elements called syntactic operators. The CTMU identifies itself with the structure of these operators and thus with the distributive syntax of its self-modeling SCSPL universe, including the reflexive grammar by which the universe refines itself from unbound telesis or UBT, a primordial realm of infocognitive potential free of informational constraint. Under the guidance of a limiting (intrinsic) form of anthropic principle called the Telic Principle, SCSPL evolves by telic recursion, jointly configuring syntax and state while maximizing a generalized self-selection parameter and adjusting on the fly to freely-changing internal conditions. SCSPL relates space, time and object by means of conspansive duality and conspansion, an SCSPL-grammatical process featuring an alternation between dual phases of existence associated with design and actualization and related to the familiar wave-particle duality of quantum mechanics. By distributing the design phase of reality over the actualization phase, conspansive spacetime also provides a distributed mechanism for Intelligent Design, adjoining to the restrictive principle of natural selection a basic means of generating information and complexity. Addressing physical evolution on not only the biological but cosmic level, the CTMU addresses the most evident deficiencies and paradoxes associated with conventional discrete and continuum models of reality, including temporal directionality and accelerating cosmic expansion, while preserving virtually all of the major benefits of current scientific and mathematical paradigms.
Publisher: Mega Foundation Press
ISBN: 0971916225
Category : Philosophy
Languages : en
Pages : 94
Book Description
Paperback version of the 2002 paper published in the journal Progress in Information, Complexity, and Design (PCID). ABSTRACT Inasmuch as science is observational or perceptual in nature, the goal of providing a scientific model and mechanism for the evolution of complex systems ultimately requires a supporting theory of reality of which perception itself is the model (or theory-to-universe mapping). Where information is the abstract currency of perception, such a theory must incorporate the theory of information while extending the information concept to incorporate reflexive self-processing in order to achieve an intrinsic (self-contained) description of reality. This extension is associated with a limiting formulation of model theory identifying mental and physical reality, resulting in a reflexively self-generating, self-modeling theory of reality identical to its universe on the syntactic level. By the nature of its derivation, this theory, the Cognitive Theoretic Model of the Universe or CTMU, can be regarded as a supertautological reality-theoretic extension of logic. Uniting the theory of reality with an advanced form of computational language theory, the CTMU describes reality as a Self Configuring Self-Processing Language or SCSPL, a reflexive intrinsic language characterized not only by self-reference and recursive self-definition, but full self-configuration and self-execution (reflexive read-write functionality). SCSPL reality embodies a dual-aspect monism consisting of infocognition, self-transducing information residing in self-recognizing SCSPL elements called syntactic operators. The CTMU identifies itself with the structure of these operators and thus with the distributive syntax of its self-modeling SCSPL universe, including the reflexive grammar by which the universe refines itself from unbound telesis or UBT, a primordial realm of infocognitive potential free of informational constraint. Under the guidance of a limiting (intrinsic) form of anthropic principle called the Telic Principle, SCSPL evolves by telic recursion, jointly configuring syntax and state while maximizing a generalized self-selection parameter and adjusting on the fly to freely-changing internal conditions. SCSPL relates space, time and object by means of conspansive duality and conspansion, an SCSPL-grammatical process featuring an alternation between dual phases of existence associated with design and actualization and related to the familiar wave-particle duality of quantum mechanics. By distributing the design phase of reality over the actualization phase, conspansive spacetime also provides a distributed mechanism for Intelligent Design, adjoining to the restrictive principle of natural selection a basic means of generating information and complexity. Addressing physical evolution on not only the biological but cosmic level, the CTMU addresses the most evident deficiencies and paradoxes associated with conventional discrete and continuum models of reality, including temporal directionality and accelerating cosmic expansion, while preserving virtually all of the major benefits of current scientific and mathematical paradigms.
Engineering Materials 2
Author: Michael F. Ashby
Publisher: Elsevier
ISBN: 1483297217
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.
Publisher: Elsevier
ISBN: 1483297217
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.