Epitaxial Growth of GaN-based LEDs on Simple Sacrificial Substrates

Epitaxial Growth of GaN-based LEDs on Simple Sacrificial Substrates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this project is to produce alternative substrate technologies for GaN-based LEDs by developing an ALD interlayer of Al2O3 on sacrificial substrates such as ZnO and Si. A sacrificial substrate is used for device growth that can easily be removed using a wet chemical etchant leaving only the thin GaN epi-layer. After substrate removal, the GaN LED chip can then be mounted in several different ways to a metal heat sink/reflector and light extraction techniques can then be applied to the chip and compared for performance. Success in this work will lead to high efficiency LED devices with a simple low cost fabrication method and high product yield as stated by DOE goals for its solid state lighting portfolio.

III-Nitride Based Light Emitting Diodes and Applications

III-Nitride Based Light Emitting Diodes and Applications PDF Author: Tae-Yeon Seong
Publisher: Springer
ISBN: 9811037558
Category : Science
Languages : en
Pages : 498

Get Book Here

Book Description
The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performance of LEDs is seriously dependent. Most importantly, it describes why there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and In-rich GaN-based semiconductors. The quality of materials is directly dependent on the substrates used, such as sapphire and Si, and the book discusses these as well as topics such as efficiency droop, growth in different orientations, polarization, and chip processing and packaging technologies. Offering an overview of the state of the art in III-Nitride LED science and technology, the book will be a core reference for researchers and engineers involved with the developments of solid state lighting, and required reading for students entering the field.

Progress in Research of GaN-based LEDs Fabricated on SiC Substrate*Project Supported by the National Basic Research Program of China (Grant No. 2011CB301904) and the National Natural Science Foundation of China (Grant Nos. 11134006 and 61327808).

Progress in Research of GaN-based LEDs Fabricated on SiC Substrate*Project Supported by the National Basic Research Program of China (Grant No. 2011CB301904) and the National Natural Science Foundation of China (Grant Nos. 11134006 and 61327808). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated. It is found that the AlGaN nucleation layer with high growth temperature can efficiently decrease the dislocation density and stress of the GaN film compared with AlN buffer layer. To increase the light extraction efficiency of GaN-based LEDs on SiC substrate, flip-chip structure and thin film flip-chip structure were designed and optimized. The fabricated blue LED had a maximum wall-plug efficiency of 72% at 80 mA. At 350 mA, the output power, the V f, the dominant wavelength, and the wall-plug efficiency of the blue LED were 644 mW, 2.95 V, 460 nm, and 63%, respectively.

Epitaxial Growth and Characteristics Study of GaN Based LED by MOCVD

Epitaxial Growth and Characteristics Study of GaN Based LED by MOCVD PDF Author: 黃炳源
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Get Book Here

Book Description


Light-Emitting Diodes

Light-Emitting Diodes PDF Author: Jinmin Li
Publisher: Springer
ISBN: 3319992112
Category : Technology & Engineering
Languages : en
Pages : 601

Get Book Here

Book Description
Comprehensive in scope, this book covers the latest progresses of theories, technologies and applications of LEDs based on III-V semiconductor materials, such as basic material physics, key device issues (homoepitaxy and heteroepitaxy of the materials on different substrates, quantum efficiency and novel structures, and more), packaging, and system integration. The authors describe the latest developments of LEDs with spectra coverage from ultra-violet (UV) to the entire visible light wavelength. The major aspects of LEDs, such as material growth, chip structure, packaging, and reliability are covered, as well as emerging and novel applications beyond the general and conventional lightings. This book, written by leading authorities in the field, is indispensable reading for researchers and students working with semiconductors, optoelectronics, and optics. Addresses novel LED applications such as LEDs for healthcare and wellbeing, horticulture, and animal breeding; Editor and chapter authors are global leading experts from the scientific and industry communities, and their latest research findings and achievements are included; Foreword by Hiroshi Amano, one of the 2014 winners of the Nobel Prize in Physics for his work on light-emitting diodes.

III-Nitride Based Light Emitting Diodes and Applications

III-Nitride Based Light Emitting Diodes and Applications PDF Author: Tae-Yeon Seong
Publisher: Springer Science & Business Media
ISBN: 9400758634
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on the substrates used, such as sapphire, Si, etc. In addition, efficiency droop, growth on different orientations and polarization are also important. Chip processing and packaging technologies are key issues. This book presents a comprehensive review of contemporary LED issues. Given the interest and importance of future research in nitride semiconducting materials and solid state lighting applications, the contents are very timely. The book is composed of chapters written by leading researchers in III-nitride semiconducting materials and device technology. This book will be of interest to scientists and engineers working on LEDs for lighting applications. Postgraduate researchers working on LEDs will also benefit from the issues this book provides.

Wafer Bonding

Wafer Bonding PDF Author: Marin Alexe
Publisher: Springer Science & Business Media
ISBN: 3662108275
Category : Science
Languages : en
Pages : 510

Get Book Here

Book Description
The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

Micro Light Emitting Diode: Fabrication and Devices

Micro Light Emitting Diode: Fabrication and Devices PDF Author: Jong-Hyun Ahn
Publisher: Springer Nature
ISBN: 9811655057
Category : Science
Languages : en
Pages : 161

Get Book Here

Book Description
This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.

Inorganic Nanowires

Inorganic Nanowires PDF Author: M. Meyyappan
Publisher: CRC Press
ISBN: 1420067834
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book Here

Book Description
Advances in nanofabrication, characterization tools, and the drive to commercialize nanotechnology products have contributed to the significant increase in research on inorganic nanowires (INWs). Yet few if any books provide the necessary comprehensive and coherent account of this important evolution. Presenting essential information on both popular and emerging varieties, Inorganic Nanowires: Applications, Properties, and Characterization addresses the growth, characterization, and properties of nanowires. Author Meyyappan is the director and senior scientist at Ames Center for Nanotechnology and a renowned leader in nanoscience and technology, and Sunkara is also a major contributor to nanowire literature. Their cutting-edge work is the basis for much of the current understanding in the area of nanowires, and this book offers an in-depth overview of various types of nanowires, including semiconducting, metallic, and oxide varieties. It also includes extensive coverage of applications that use INWs and those with great potential in electronics, optoelectronics, field emission, thermoelectric devices, and sensors. This invaluable reference: Traces the evolution of nanotechnology and classifies nanomaterials Describes nanowires and their potential applications to illustrate connectivity and continuity Discusses growth techniques, at both laboratory and commercial scales Evaluates the most important aspects of classical thermodynamics associated with the nucleation and growth of nanowires Details the development of silicon, germanium, gallium arsenide, and other materials in the form of nanowires used in electronics applications Explores the physical, electronic and other properties of nanowires The explosion of nanotechnology research activities for various applications is due in large part to the advances in the growth of nanowires. Continued development of novel nanostructured materials is essential to the success of so many economic sectors, ranging from computing and communications to transportation and medicine. This volume discusses how and why nanowires are ideal candidates to replace bulk and thin film materials. It covers the principles behind device operation and then adds a detailed assessment of nanowire fabrication, performance results, and future prospects and challenges, making this book a valuable resource for scientists and engineers in just about any field. Co-author Meyya Meyyappan will receive the Pioneer Award in Nanotechnology from the IEEE Nanotechnology Council at the IEEE Nano Conference in Portland, Oregon in August, 2011

Handbook of Solid-State Lighting and LEDs

Handbook of Solid-State Lighting and LEDs PDF Author: Zhe Chuan Feng
Publisher: CRC Press
ISBN: 1351647644
Category : Science
Languages : en
Pages : 968

Get Book Here

Book Description
This handbook addresses the development of energy-efficient, environmentally friendly solid-state light sources, in particular semiconductor light emitting diodes (LEDs) and other solid-state lighting devices. It reflects the vast growth of this field and impacts in diverse industries, from lighting to communications, biotechnology, imaging, and medicine. The chapters include coverage of nanoscale processing, fabrication of LEDs, light diodes, photodetectors and nanodevices, characterization techniques, application, and recent advances. Readers will obtain an understanding of the key properties of solid-state lighting and LED devices, an overview of current technologies, and appreciation for the challenges remaining. The handbook will be useful to material growers and evaluators, device design and processing engineers, newcomers, students, and professionals in the field.