Epitaxial Graphene on Silicon Carbide

Epitaxial Graphene on Silicon Carbide PDF Author: Gemma Rius
Publisher: CRC Press
ISBN: 1351736213
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.

Epitaxial Graphene on Silicon Carbide

Epitaxial Graphene on Silicon Carbide PDF Author: Gemma Rius
Publisher: CRC Press
ISBN: 1351736213
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.

Silicon Carbide Biotechnology

Silicon Carbide Biotechnology PDF Author: Stephen E. Saddow
Publisher: Elsevier
ISBN: 0123859077
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices

Graphene Nanoelectronics

Graphene Nanoelectronics PDF Author: Hassan Raza
Publisher: Springer Science & Business Media
ISBN: 3642229840
Category : Science
Languages : en
Pages : 611

Get Book Here

Book Description
Graphene is a perfectly two-dimensional single-atom thin membrane with zero bandgap. It has attracted huge attention due to its linear dispersion around the Dirac point, excellent transport properties, novel magnetic characteristics, and low spin-orbit coupling. Graphene and its nanostructures may have potential applications in spintronics, photonics, plasmonics and electronics. This book brings together a team of experts to provide an overview of the most advanced topics in theory, experiments, spectroscopy and applications of graphene and its nanostructures. It covers the state-of-the-art in tutorial-like and review-like manner to make the book useful not only to experts, but also newcomers and graduate students.

Graphene

Graphene PDF Author: Wonbong Choi
Publisher: CRC Press
ISBN: 1439861889
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness,

Graphene

Graphene PDF Author: Viera Skakalova
Publisher: Elsevier
ISBN: 0857099337
Category : Technology & Engineering
Languages : en
Pages : 401

Get Book Here

Book Description
Graphene: Properties, Preparation, Characterisation and Devices reviews the preparation and properties of this exciting material. Graphene is a single-atom-thick sheet of carbon with properties, such as the ability to conduct light and electrons, which could make it potentially suitable for a variety of devices and applications, including electronics, sensors, and photonics. Chapters in part one explore the preparation of , including epitaxial growth of graphene on silicon carbide, chemical vapor deposition (CVD) growth of graphene films, chemically derived graphene, and graphene produced by electrochemical exfoliation. Part two focuses on the characterization of graphene using techniques including transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy. These chapters also discuss photoemission of low dimensional carbon systems. Finally, chapters in part three discuss electronic transport properties of graphene and graphene devices. This part highlights electronic transport in bilayer graphene, single charge transport, and the effect of adsorbents on electronic transport in graphene. It also explores graphene spintronics and nano-electro-mechanics (NEMS). Graphene is a comprehensive resource for academics, materials scientists, and electrical engineers working in the microelectronics and optoelectronics industries. - Explores the graphene preparation techniques, including epitaxial growth on silicon carbide, chemical vapor deposition (CVD), chemical derivation, and electrochemical exfoliation - Focuses on the characterization of graphene using transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy - A comprehensive resource for academics, materials scientists, and electrical engineers

Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials PDF Author: Luis E. F. Foa Torres
Publisher: Cambridge University Press
ISBN: 1107030838
Category : Science
Languages : en
Pages : 425

Get Book Here

Book Description
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.

Silicon Carbide

Silicon Carbide PDF Author: Wolfgang J. Choyke
Publisher: Springer Science & Business Media
ISBN: 3642188702
Category : Technology & Engineering
Languages : en
Pages : 911

Get Book Here

Book Description
Since the 1997 publication of "Silicon Carbide - A Review of Fundamental Questions and Applications to Current Device Technology" edited by Choyke, et al., there has been impressive progress in both the fundamental and developmental aspects of the SiC field. So there is a growing need to update the scientific community on the important events in research and development since then. The editors have again gathered an outstanding team of the world's leading SiC researchers and design engineers to write on the most recent developments in SiC.

Epitaxial Graphene on Silicon Carbide

Epitaxial Graphene on Silicon Carbide PDF Author: Gemma Rius
Publisher: CRC Press
ISBN: 1351736221
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.

Silicon Materials

Silicon Materials PDF Author: Beddiaf Zaidi
Publisher: BoD – Books on Demand
ISBN: 1789846587
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
Apart from oxygen, silicon is the most commonly occurring element on Earth. Silicon materials have many applications in the manufacturing technology of microelectronic components, integrated circuits, and photovoltaic generators. Circuit complexity and higher degrees of integration of components require constant improvement and control of silicon's properties. This book provides information on silicon materials, their use, and their impact on the modern world economy.

Physics and Chemistry of Graphene

Physics and Chemistry of Graphene PDF Author: Toshiaki Enoki
Publisher: CRC Press
ISBN: 9814241482
Category : Science
Languages : en
Pages : 478

Get Book Here

Book Description
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.