Author: Gorden Hammes
Publisher: Elsevier
ISBN: 032315817X
Category : Science
Languages : en
Pages : 276
Book Description
Enzyme Catalysis and Regulation is an introduction to enzyme catalysis and regulation and covers topics ranging from protein structure and dynamics to steady-state enzyme kinetics, multienzyme complexes, and membrane-bound enzymes. Case studies of selected enzyme mechanisms are also presented. This book consists of 11 chapters and begins with a brief overview of enzyme structure, followed by a discussion on methods of probing enzyme structure such as X-ray crystallography and optical spectroscopy. Kinetic methods are then described, with emphasis on the general principles of steady-state and transient kinetics. The chemical principles involved in enzyme catalysis are also discussed, and case studies of a few well-documented enzymes are presented. The regulation of enzyme activity is analyzed from a nongenetic viewpoint, with particular reference to binding isotherms and models for allosterism. Two particular enzymes, aspartate transcarbamoylase and phosphofructokinase, are used as examples of well-studied regulatory enzymes. The last two chapters focus on multienzyme complexes and membrane-bound enzymes. This monograph is intended for graduate students, advanced undergraduates, and research workers in molecular biology and biochemistry.
Enzyme Catalysis and Regulation
Author: Gorden Hammes
Publisher: Elsevier
ISBN: 032315817X
Category : Science
Languages : en
Pages : 276
Book Description
Enzyme Catalysis and Regulation is an introduction to enzyme catalysis and regulation and covers topics ranging from protein structure and dynamics to steady-state enzyme kinetics, multienzyme complexes, and membrane-bound enzymes. Case studies of selected enzyme mechanisms are also presented. This book consists of 11 chapters and begins with a brief overview of enzyme structure, followed by a discussion on methods of probing enzyme structure such as X-ray crystallography and optical spectroscopy. Kinetic methods are then described, with emphasis on the general principles of steady-state and transient kinetics. The chemical principles involved in enzyme catalysis are also discussed, and case studies of a few well-documented enzymes are presented. The regulation of enzyme activity is analyzed from a nongenetic viewpoint, with particular reference to binding isotherms and models for allosterism. Two particular enzymes, aspartate transcarbamoylase and phosphofructokinase, are used as examples of well-studied regulatory enzymes. The last two chapters focus on multienzyme complexes and membrane-bound enzymes. This monograph is intended for graduate students, advanced undergraduates, and research workers in molecular biology and biochemistry.
Publisher: Elsevier
ISBN: 032315817X
Category : Science
Languages : en
Pages : 276
Book Description
Enzyme Catalysis and Regulation is an introduction to enzyme catalysis and regulation and covers topics ranging from protein structure and dynamics to steady-state enzyme kinetics, multienzyme complexes, and membrane-bound enzymes. Case studies of selected enzyme mechanisms are also presented. This book consists of 11 chapters and begins with a brief overview of enzyme structure, followed by a discussion on methods of probing enzyme structure such as X-ray crystallography and optical spectroscopy. Kinetic methods are then described, with emphasis on the general principles of steady-state and transient kinetics. The chemical principles involved in enzyme catalysis are also discussed, and case studies of a few well-documented enzymes are presented. The regulation of enzyme activity is analyzed from a nongenetic viewpoint, with particular reference to binding isotherms and models for allosterism. Two particular enzymes, aspartate transcarbamoylase and phosphofructokinase, are used as examples of well-studied regulatory enzymes. The last two chapters focus on multienzyme complexes and membrane-bound enzymes. This monograph is intended for graduate students, advanced undergraduates, and research workers in molecular biology and biochemistry.
Dynamics in Enzyme Catalysis
Author: Judith Klinman
Publisher: Springer
ISBN: 3642389627
Category : Science
Languages : en
Pages : 217
Book Description
Christopher M. Cheatum and Amnon Kohen, Relationship of Femtosecond–Picosecond Dynamics to Enzyme-Catalyzed H-Transfer. Cindy Schulenburg and Donald Hilvert, Protein Conformational Disorder and Enzyme Catalysis. A. Joshua Wand, Veronica R. Moorman and Kyle W. Harpole, A Surprising Role for Conformational Entropy in Protein Function. Travis P. Schrank, James O. Wrabl and Vincent J. Hilser, Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations. Buyong Ma and Ruth Nussinov, Structured Crowding and Its Effects on Enzyme Catalysis. Michael D. Daily, Haibo Yu, George N. Phillips Jr and Qiang Cui, Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. Karunesh Arora and Charles L. Brooks III, Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase. Steven D. Schwartz, Protein Dynamics and the Enzymatic Reaction Coordinate.
Publisher: Springer
ISBN: 3642389627
Category : Science
Languages : en
Pages : 217
Book Description
Christopher M. Cheatum and Amnon Kohen, Relationship of Femtosecond–Picosecond Dynamics to Enzyme-Catalyzed H-Transfer. Cindy Schulenburg and Donald Hilvert, Protein Conformational Disorder and Enzyme Catalysis. A. Joshua Wand, Veronica R. Moorman and Kyle W. Harpole, A Surprising Role for Conformational Entropy in Protein Function. Travis P. Schrank, James O. Wrabl and Vincent J. Hilser, Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations. Buyong Ma and Ruth Nussinov, Structured Crowding and Its Effects on Enzyme Catalysis. Michael D. Daily, Haibo Yu, George N. Phillips Jr and Qiang Cui, Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. Karunesh Arora and Charles L. Brooks III, Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase. Steven D. Schwartz, Protein Dynamics and the Enzymatic Reaction Coordinate.
Biology for AP ® Courses
Author: Julianne Zedalis
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Chromatin Regulation and Dynamics
Author: Anita Göndör
Publisher: Academic Press
ISBN: 0128034025
Category : Science
Languages : en
Pages : 498
Book Description
Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. - Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective - Promotes crosstalk between basic sciences and their applications in medicine - Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles - Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes
Publisher: Academic Press
ISBN: 0128034025
Category : Science
Languages : en
Pages : 498
Book Description
Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. - Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective - Promotes crosstalk between basic sciences and their applications in medicine - Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles - Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes
Principles of Biology
Author: Lisa Bartee
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Enzyme Dynamics and Regulation
Author: P. Boon Chock
Publisher: Springer Science & Business Media
ISBN: 1461237440
Category : Science
Languages : en
Pages : 441
Book Description
Recent developments in concepts and techniques have brought enzyme research to a changing yet exciting stage. Enzymes have served as indispensable tools in the phenomenal rise of molecular biology, and the resultant biotechnology thrusts enzymes to new heights and territories. This volume, the proceedings of a recent symposium on the Dynamics of Soluble and Immobilized Enzyme Systems, provides a current overview of the field to help scientists utilize long-established and newly acquired information.
Publisher: Springer Science & Business Media
ISBN: 1461237440
Category : Science
Languages : en
Pages : 441
Book Description
Recent developments in concepts and techniques have brought enzyme research to a changing yet exciting stage. Enzymes have served as indispensable tools in the phenomenal rise of molecular biology, and the resultant biotechnology thrusts enzymes to new heights and territories. This volume, the proceedings of a recent symposium on the Dynamics of Soluble and Immobilized Enzyme Systems, provides a current overview of the field to help scientists utilize long-established and newly acquired information.
Protein Conformational Dynamics
Author: Ke-li Han
Publisher: Springer Science & Business Media
ISBN: 3319029703
Category : Medical
Languages : en
Pages : 488
Book Description
This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.
Publisher: Springer Science & Business Media
ISBN: 3319029703
Category : Medical
Languages : en
Pages : 488
Book Description
This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.
Biological Complexity and the Dynamics of Life Processes
Author: J. Ricard
Publisher: Elsevier
ISBN: 0080860958
Category : Science
Languages : en
Pages : 369
Book Description
The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
Publisher: Elsevier
ISBN: 0080860958
Category : Science
Languages : en
Pages : 369
Book Description
The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
Biomass, Biofuels, Biochemicals
Author: Sudhir P. Singh
Publisher: Elsevier
ISBN: 0128198214
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Advances in Enzyme Catalysis and Technologies intends to provide the basic structural and functional descriptions, and classification of enzymes. The scientific information related to the recombinant enzyme modifications, discovery of novel enzymes and development of synthetic enzymes are also presented. The translational aspects of enzyme catalysis and bioprocess technologies are illustrated, by emphasizing the current requirements and future perspectives of industrial biotechnology. Several case studies are included on enzymes for biofuels application, micro algal biorefineries, high-value bioactive molecules production and enzymes for environmental processes, such as enzymatic bioprocessing for functional food development, biocatalytic technologies for the production of functional sweetener, etc. - Provides a conceptual understanding of enzyme catalysis, enzyme engineering, discovery of novel enzymes, and technology perspectives - Includes comprehensive information about the inventions and advancement in enzyme system development for biomass processing and functional food developmental aspects - Gives an updated reference for education and understanding of enzyme technology
Publisher: Elsevier
ISBN: 0128198214
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Advances in Enzyme Catalysis and Technologies intends to provide the basic structural and functional descriptions, and classification of enzymes. The scientific information related to the recombinant enzyme modifications, discovery of novel enzymes and development of synthetic enzymes are also presented. The translational aspects of enzyme catalysis and bioprocess technologies are illustrated, by emphasizing the current requirements and future perspectives of industrial biotechnology. Several case studies are included on enzymes for biofuels application, micro algal biorefineries, high-value bioactive molecules production and enzymes for environmental processes, such as enzymatic bioprocessing for functional food development, biocatalytic technologies for the production of functional sweetener, etc. - Provides a conceptual understanding of enzyme catalysis, enzyme engineering, discovery of novel enzymes, and technology perspectives - Includes comprehensive information about the inventions and advancement in enzyme system development for biomass processing and functional food developmental aspects - Gives an updated reference for education and understanding of enzyme technology
Mass Spectrometry in Chemical Biology
Author: Norberto Peporine Lopes
Publisher: Royal Society of Chemistry
ISBN: 1788013468
Category : Science
Languages : en
Pages : 312
Book Description
Mass spectrometry is one of the most widespread technologies in chemistry and has been increasingly used in biology with the rise of omics sciences. This book summarizes some important methodological approaches in mass spectrometry and applications in the field of chemical biology. The core chapters build on basic concepts introduced in the opening chapter and explore established fields such as high throughput screening, proteomics and metabolomics. Emerging applications of mass spectrometry in elucidating biosynthetic pathways, enzyme mechanisms and protein-protein interactions are then presented. Connections between these diverse research fields are highlighted throughout. The book concludes with a discussion of databases and future perspectives. This book will be a useful tool to early chemical biology researchers wishing to incorporate mass spectrometry as a tool in their research.
Publisher: Royal Society of Chemistry
ISBN: 1788013468
Category : Science
Languages : en
Pages : 312
Book Description
Mass spectrometry is one of the most widespread technologies in chemistry and has been increasingly used in biology with the rise of omics sciences. This book summarizes some important methodological approaches in mass spectrometry and applications in the field of chemical biology. The core chapters build on basic concepts introduced in the opening chapter and explore established fields such as high throughput screening, proteomics and metabolomics. Emerging applications of mass spectrometry in elucidating biosynthetic pathways, enzyme mechanisms and protein-protein interactions are then presented. Connections between these diverse research fields are highlighted throughout. The book concludes with a discussion of databases and future perspectives. This book will be a useful tool to early chemical biology researchers wishing to incorporate mass spectrometry as a tool in their research.