Engineering in K-12 Education

Engineering in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595

Get Book Here

Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.

Engineering in K-12 Education

Engineering in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595

Get Book Here

Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.

Building Capacity for Teaching Engineering in K-12 Education

Building Capacity for Teaching Engineering in K-12 Education PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309499429
Category : Education
Languages : en
Pages : 261

Get Book Here

Book Description
Engineering education is emerging as an important component of US K-12 education. Across the country, students in classrooms and after- and out-of-school programs are participating in hands-on, problem-focused learning activities using the engineering design process. These experiences can be engaging; support learning in other areas, such as science and mathematics; and provide a window into the important role of engineering in society. As the landscape of K-12 engineering education continues to grow and evolve, educators, administrators, and policy makers should consider the capacity of the US education system to meet current and anticipated needs for K-12 teachers of engineering. Building Capacity for Teaching Engineering in K-12 Education reviews existing curricula and programs as well as related research to understand current and anticipated future needs for engineering-literate K-12 educators in the United States and determine how these needs might be addressed. Key topics in this report include the preparation of K-12 engineering educators, professional pathways for K-12 engineering educators, and the role of higher education in preparing engineering educators. This report proposes steps that stakeholders - including professional development providers, postsecondary preservice education programs, postsecondary engineering and engineering technology programs, formal and informal educator credentialing organizations, and the education and learning sciences research communities - might take to increase the number, skill level, and confidence of K-12 teachers of engineering in the United States.

Engineering in Pre-college Settings

Engineering in Pre-college Settings PDF Author: Şenay Purzer
Publisher: Purdue University Press
ISBN: 1557536910
Category : Education
Languages : en
Pages : 469

Get Book Here

Book Description
In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.

A Framework for K-12 Science Education

A Framework for K-12 Science Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400

Get Book Here

Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Teaching K-12 Science and Engineering During a Crisis

Teaching K-12 Science and Engineering During a Crisis PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309681979
Category : Education
Languages : en
Pages : 135

Get Book Here

Book Description
The COVID-19 pandemic is resulting in widespread and ongoing changes to how the K-12 education system functions, including disruptions to science teaching and learning environments. Students and teachers are all figuring out how to do schooling differently, and districts and states are working overtime to reimagine systems and processes. This is difficult and stressful work in the middle of the already stressful and sometimes traumatic backdrop of the global pandemic. In addition, students with disabilities, students of color, immigrants, English learners, and students from under-resourced communities have been disproportionately affected, both by the pandemic itself and by the resulting instructional shifts. Teaching K-12 Science and Engineering During a Crisis aims to describe what high quality science and engineering education can look like in a time of great uncertainty and to support practitioners as they work toward their goals. This book includes guidance for science and engineering practitioners - with an emphasis on the needs of district science supervisors, curriculum leads, and instructional coaches. Teaching K-12 Science and Engineering During a Crisis will help K-12 science and engineering teachers adapt learning experiences as needed to support students and their families dealing with ongoing changes to instructional and home environments and at the same time provide high quality in those experiences.

STEM Integration in K-12 Education

STEM Integration in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309297990
Category : Education
Languages : en
Pages : 143

Get Book Here

Book Description
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.

Successful K-12 STEM Education

Successful K-12 STEM Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309213002
Category : Education
Languages : en
Pages : 44

Get Book Here

Book Description
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.

Engineering in Elementary STEM Education

Engineering in Elementary STEM Education PDF Author: Christine M. Cunningham
Publisher: Teachers College Press
ISBN: 0807758779
Category : Education
Languages : en
Pages : 177

Get Book Here

Book Description
Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of Science team that has spent 15 years developing elementary engineering curricula, this book outlines how engineering can be integrated into a broader STEM curriculum, details its pedagogical benefits to students, and includes classroom examples to help educators tailor instruction to engage diverse students. Featuring vignettes, case studies, videos, research results, and assessments, this resource will help readers visualize high-quality elementary engineering and understand the theoretical principles in context. Book Features: Frameworks to help teachers create curricula and structure activities. A focus on engaging the diversity of learners in today’s classrooms. Experiences from the nation’s leading elementary education curriculum that has reached 13.3 million children and 165,000 educators. Go to eie.org/book for videos, assessment tools, reproducibles, and other instructional supports that enliven the text.

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices PDF Author: Christina V. Schwarz
Publisher: NSTA Press
ISBN: 1941316956
Category : Education
Languages : en
Pages : 393

Get Book Here

Book Description
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.

Engineering Education for the Next Generation: A Nature-Inspired Approach

Engineering Education for the Next Generation: A Nature-Inspired Approach PDF Author: Samuel Cord Stier
Publisher: W. W. Norton & Company
ISBN: 0393713784
Category : Education
Languages : en
Pages : 435

Get Book Here

Book Description
Guide your students through the fascinating world of engineering, and how to draw inspiration from Nature’s genius to create, make, and innovate a better human-built world. Studded with more than 150 illustrations of natural phenomena and engineering concepts, this fascinating and practical book clearly demonstrates how engineering design is broadly relevant for all students, not just those who may become scientists or engineers. Mr. Stier describes clever, engaging activities for students at every grade level to grasp engineering concepts by exploring the everyday design genius of the natural world around us. Students will love learning about structural engineering while standing on eggs; investigating concepts in sustainable design by manufacturing cement out of car exhaust; and coming to understand how ant behavior has revolutionized the way computer programs, robots, movies, and video games are designed today. You will come away with an understanding of engineering and Nature unlike any you’ve had before, while taking your ability to engage students to a whole new level. Engineering Education for the Next Generation is a wonderful introduction to the topic for any teacher who wants to understand more about engineering design in particular, its relation to the larger subjects of STEM/STEAM, and how to engage students from all backgrounds in a way that meaningfully transforms their outlook on the world and their own creativity in a lifelong way. · Fun to read, comprehensive exploration of cutting-edge approaches to K-12 engineering education · Detailed descriptions and explanations to help teachers create activities and lessons · An emphasis on engaging students with broad and diverse interests and backgrounds · Insights from a leading, award-winning K-12 engineering curriculum that has reached thousands of teachers and students in the U.S. and beyond · Additional support website (www.LearningWithNature.org) providing more background, videos, curricula, slide decks, and other supplemental materials