Author: Sergio Saponara
Publisher: MDPI
ISBN: 3039364251
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This is a reprint in book form of the Energies MDPI Journal Special Issue , entitled “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”. The Special Issue was managed by two Guest Editors from Italy and Norway: Professor Sergio Saponara from the University of Pisa and Professor Lucian MIHET-POPA from Østfold University College, in close cooperation with the Editors from Energies. The papers published in this SI are related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification, and on the evolution from the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for the smart grid, as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at the levels of both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) are proposed. Research and technology transfer activities in energy storage systems, such as batteries and super/ultra-capacitors, are essential for the success of electric transportation, and to foster the use of renewable energy sources. Energy storage systems are the key technology to solve these issues, and to increase the adoption of renewable energy sources in the smart grid.
Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid
Author: Sergio Saponara
Publisher: MDPI
ISBN: 3039364251
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This is a reprint in book form of the Energies MDPI Journal Special Issue , entitled “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”. The Special Issue was managed by two Guest Editors from Italy and Norway: Professor Sergio Saponara from the University of Pisa and Professor Lucian MIHET-POPA from Østfold University College, in close cooperation with the Editors from Energies. The papers published in this SI are related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification, and on the evolution from the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for the smart grid, as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at the levels of both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) are proposed. Research and technology transfer activities in energy storage systems, such as batteries and super/ultra-capacitors, are essential for the success of electric transportation, and to foster the use of renewable energy sources. Energy storage systems are the key technology to solve these issues, and to increase the adoption of renewable energy sources in the smart grid.
Publisher: MDPI
ISBN: 3039364251
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This is a reprint in book form of the Energies MDPI Journal Special Issue , entitled “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”. The Special Issue was managed by two Guest Editors from Italy and Norway: Professor Sergio Saponara from the University of Pisa and Professor Lucian MIHET-POPA from Østfold University College, in close cooperation with the Editors from Energies. The papers published in this SI are related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification, and on the evolution from the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for the smart grid, as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at the levels of both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) are proposed. Research and technology transfer activities in energy storage systems, such as batteries and super/ultra-capacitors, are essential for the success of electric transportation, and to foster the use of renewable energy sources. Energy storage systems are the key technology to solve these issues, and to increase the adoption of renewable energy sources in the smart grid.
Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
Author: Haitham Abu-Rub
Publisher: John Wiley & Sons
ISBN: 1118755502
Category : Technology & Engineering
Languages : en
Pages : 1080
Book Description
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Publisher: John Wiley & Sons
ISBN: 1118755502
Category : Technology & Engineering
Languages : en
Pages : 1080
Book Description
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Modeling and Simulation of Electricity Systems for Transport and Energy Storage
Author: Regina Lamedica
Publisher: MDPI
ISBN: 3036503269
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
This book comprises five peer-reviewed articles covering original research articles on the modeling and simulation of electricity systems for transport and energy storage. The topics include: 1 - Optimal siting and sizing methodology to design an energy storage system (ESS) for railway lines; 2 - Technical–economic comparison between a 3 kV DC railway and the use of trains with on-board storage systems; 3 - How to improve electrical feeding substations, by changing transformer technology and by installing dedicated high-power-oriented storage systems; 4 - Algorithm applied to a vehicle-to-grid (V2G) technology. 5 - Thermal investigation and optimization of an air-cooled lithium-ion battery pack.
Publisher: MDPI
ISBN: 3036503269
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
This book comprises five peer-reviewed articles covering original research articles on the modeling and simulation of electricity systems for transport and energy storage. The topics include: 1 - Optimal siting and sizing methodology to design an energy storage system (ESS) for railway lines; 2 - Technical–economic comparison between a 3 kV DC railway and the use of trains with on-board storage systems; 3 - How to improve electrical feeding substations, by changing transformer technology and by installing dedicated high-power-oriented storage systems; 4 - Algorithm applied to a vehicle-to-grid (V2G) technology. 5 - Thermal investigation and optimization of an air-cooled lithium-ion battery pack.
Power Electronics in Renewable Energy Systems and Smart Grid
Author: Bimal K. Bose
Publisher: John Wiley & Sons
ISBN: 1119515629
Category : Technology & Engineering
Languages : en
Pages : 756
Book Description
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.
Publisher: John Wiley & Sons
ISBN: 1119515629
Category : Technology & Engineering
Languages : en
Pages : 756
Book Description
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.
Sustainable Power Systems
Author: Nava Raj Karki
Publisher: Springer
ISBN: 9811022305
Category : Business & Economics
Languages : en
Pages : 186
Book Description
This book deals with quantifying and analyzing the risks associated with sustainable energy technology growth in electric power systems, and developing appropriate models and methodologies to mitigate the risks and improve the overall system performance. The rapid increase in the installation of renewable energy sources in electric power systems has given rise to a wide range of problems related to planning and operation of power systems to maintain quality, stability, reliability and efficiency. Additionally, there is a growing global environmental concern regarding increasing emissions from the electric power generation required to meet rising energy needs and support sustainable and inclusive development. The phenomenon of low voltage ride through (LVRT), common to wind energy systems, is discussed, and ways to tackle the same are proposed in the first chapter. Subsequent chapters propose methods of optimizing a sustainable and smart microgrid, and supplying electricity to remote areas of a developing country with no immediate possibility of national grid extension. The economic benefit and technical challenges of forming localized minigrid are also discussed. The book proposes a method for reliability assessment of a power grid with sustainable power transportation system. The issue of weak link in power system is very important as it will provide the system operators and planners to take necessary measures to strengthen the system. An approach to determine the weak parts of the system and its unreliability is proposed. With increasing installation of HVDC power transmission and development of efficient and low cost power electronic devices, the DC microgrids are becoming a common phenomenon. Their existence together with AC Grids result in Hybrid AC/DC Microgrids, which are discussed in this book. It further presents a method for reliability evaluation of a distribution system with network reconfiguration in the presence of distributed generation. The important problems in sustainable energy growth, and their potential solutions discussed and presented in the book should be of great interest to engineers, policy makers, researchers and academics in the area of electric power engineering.
Publisher: Springer
ISBN: 9811022305
Category : Business & Economics
Languages : en
Pages : 186
Book Description
This book deals with quantifying and analyzing the risks associated with sustainable energy technology growth in electric power systems, and developing appropriate models and methodologies to mitigate the risks and improve the overall system performance. The rapid increase in the installation of renewable energy sources in electric power systems has given rise to a wide range of problems related to planning and operation of power systems to maintain quality, stability, reliability and efficiency. Additionally, there is a growing global environmental concern regarding increasing emissions from the electric power generation required to meet rising energy needs and support sustainable and inclusive development. The phenomenon of low voltage ride through (LVRT), common to wind energy systems, is discussed, and ways to tackle the same are proposed in the first chapter. Subsequent chapters propose methods of optimizing a sustainable and smart microgrid, and supplying electricity to remote areas of a developing country with no immediate possibility of national grid extension. The economic benefit and technical challenges of forming localized minigrid are also discussed. The book proposes a method for reliability assessment of a power grid with sustainable power transportation system. The issue of weak link in power system is very important as it will provide the system operators and planners to take necessary measures to strengthen the system. An approach to determine the weak parts of the system and its unreliability is proposed. With increasing installation of HVDC power transmission and development of efficient and low cost power electronic devices, the DC microgrids are becoming a common phenomenon. Their existence together with AC Grids result in Hybrid AC/DC Microgrids, which are discussed in this book. It further presents a method for reliability evaluation of a distribution system with network reconfiguration in the presence of distributed generation. The important problems in sustainable energy growth, and their potential solutions discussed and presented in the book should be of great interest to engineers, policy makers, researchers and academics in the area of electric power engineering.
Handbook on Battery Energy Storage System
Author: Asian Development Bank
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Electrical Power and Energy Systems for Transportation Applications
Author: Paul Stewart
Publisher:
ISBN: 9783038422075
Category : Electronic book
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9783038422075
Category : Electronic book
Languages : en
Pages :
Book Description
Modeling and Control of Static Converters for Hybrid Storage Systems
Author: Fekik, Arezki
Publisher: IGI Global
ISBN: 1799874494
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
The energy transition initiated in recent years has enabled the growing integration of renewable production into the energy mix. Microgrids make it possible to maximize the efficiency of energy transmission from source to consumer by bringing the latter together geographically and by reducing losses linked to transport. However, the lack of inertia and the micro-grid support system makes it weak, and energy storage is necessary to ensure its proper functioning. Current storage technologies do not make it possible to provide both a large capacity of energy and power at the same time. Hybrid storage is a solution that combines the advantages of several technologies and reduces their disadvantages. Modeling and Control of Static Converters for Hybrid Storage Systems covers the modeling, control theorems, and optimization techniques that solve many scientific problems for researchers in the field of power converter control for renewable energy hybrid storage and places particular emphasis on the modeling and control of static converters for hybrid storage systems. Covering topics ranging from energy storage to power generation, this book is ideal for automation engineers, electrical engineers, mechanical engineers, professionals, scientists, academicians, master's and doctoral students, and researchers in the disciplines of electrical and mechanical engineering.
Publisher: IGI Global
ISBN: 1799874494
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
The energy transition initiated in recent years has enabled the growing integration of renewable production into the energy mix. Microgrids make it possible to maximize the efficiency of energy transmission from source to consumer by bringing the latter together geographically and by reducing losses linked to transport. However, the lack of inertia and the micro-grid support system makes it weak, and energy storage is necessary to ensure its proper functioning. Current storage technologies do not make it possible to provide both a large capacity of energy and power at the same time. Hybrid storage is a solution that combines the advantages of several technologies and reduces their disadvantages. Modeling and Control of Static Converters for Hybrid Storage Systems covers the modeling, control theorems, and optimization techniques that solve many scientific problems for researchers in the field of power converter control for renewable energy hybrid storage and places particular emphasis on the modeling and control of static converters for hybrid storage systems. Covering topics ranging from energy storage to power generation, this book is ideal for automation engineers, electrical engineers, mechanical engineers, professionals, scientists, academicians, master's and doctoral students, and researchers in the disciplines of electrical and mechanical engineering.
Power Electronics in Renewable Energy Systems and Smart Grid
Author: Bimal K. Bose
Publisher: John Wiley & Sons
ISBN: 1119515645
Category : Technology & Engineering
Languages : en
Pages : 745
Book Description
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.
Publisher: John Wiley & Sons
ISBN: 1119515645
Category : Technology & Engineering
Languages : en
Pages : 745
Book Description
The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.
Design of Smart Power Grid Renewable Energy Systems
Author: Ali Keyhani
Publisher: John Wiley & Sons
ISBN: 1119573343
Category : Science
Languages : en
Pages : 778
Book Description
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.
Publisher: John Wiley & Sons
ISBN: 1119573343
Category : Science
Languages : en
Pages : 778
Book Description
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.