Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II.

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II.

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Clean Air Act: Mercury Control Technologies at Coal-Fired Power Plants Have Achieved Substantial Emissions Reductions

Clean Air Act: Mercury Control Technologies at Coal-Fired Power Plants Have Achieved Substantial Emissions Reductions PDF Author:
Publisher: DIANE Publishing
ISBN: 143792400X
Category :
Languages : en
Pages : 47

Get Book Here

Book Description


Clean Air Act: Preliminary Observations on the Effectiveness and Costs of Mercury Control Technologies at Coal-Fired Power Plants: Congressional Testimony

Clean Air Act: Preliminary Observations on the Effectiveness and Costs of Mercury Control Technologies at Coal-Fired Power Plants: Congressional Testimony PDF Author:
Publisher: DIANE Publishing
ISBN: 1437919014
Category :
Languages : en
Pages : 33

Get Book Here

Book Description


Coal Fired Flue Gas Mercury Emission Controls

Coal Fired Flue Gas Mercury Emission Controls PDF Author: Jiang Wu
Publisher: Springer
ISBN: 3662463474
Category : Technology & Engineering
Languages : en
Pages : 163

Get Book Here

Book Description
Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.

Clean Air Act

Clean Air Act PDF Author: John B. Stephenson (au)
Publisher: DIANE Publishing
ISBN: 9781422302422
Category : Science
Languages : en
Pages : 66

Get Book Here

Book Description
In March 2005, the EPA issued a rule that will limit mercury emissions (ME) -- a toxic element that causes neurological problems -- from coal-fired power plants, the nation's largest ind'l. source of ME. Under the rule, ME are to be reduced from a baseline of 48 tons/yr. to 38 tons in 2010 & to 15 tons in 2018. The ME target for 2010 is based on the level of ME achievable with technol. for controlling other pollutants -- which also capture some mercury -- because it believed emerging mercury controls had not been adequately demonstrated. This report: describes the use, availability, & effectiveness of technol. to reduce ME at power plants; & identifies the factors that influence the cost of these technol. & reports on available cost estimates. Tables.

Control of mercury emissions from coalfired electric utility boilers interim report including errata dated 32102

Control of mercury emissions from coalfired electric utility boilers interim report including errata dated 32102 PDF Author:
Publisher: DIANE Publishing
ISBN: 1428900284
Category :
Languages : en
Pages : 346

Get Book Here

Book Description


Mercury Emission and its Control in Chinese Coal-Fired Power Plants

Mercury Emission and its Control in Chinese Coal-Fired Power Plants PDF Author: Jinsong Zhou
Publisher: Springer
ISBN: 3642378749
Category : Science
Languages : en
Pages : 159

Get Book Here

Book Description
"Mercury Emission and its Control in Chinese Coal-Fired Power Plants" focuses on investigating mercury emissions samplings and measurement in Chinese coal-fired power plants, mercury emission estimations and future trends, mercury speciation transformation during coal combustion, mercury control and mercury stability in byproducts. The book not only introduces mercury emissions from actual coal-fired power plants, but also presents studies on the mechanism of mercury emission and its control. This is a valuable reference for engineering thermal physicists, thermal engineers, and chemical engineers. Jinsong Zhou, Zhongyang Luo, and Mengxiang Fang are Professors in the College of Mechanical and Energy Engineering, Zhejiang University, China. Yanqun Zhu is Associate Professor in the College of Mechanical and Energy Engineering, Zhejiang University, China.

Mercury Control

Mercury Control PDF Author: Evan J. Granite
Publisher: John Wiley & Sons
ISBN: 3527329498
Category : Technology & Engineering
Languages : en
Pages : 479

Get Book Here

Book Description
This essential handbook and ready reference offers a detailed overview of the existing and currently researched technologies available for the control of mercury in coal-derived gas streams and that are viable for meeting the strict standards set by environmental protection agencies. Written by an internationally acclaimed author team from government agencies, academia and industry, it details US, EU, Asia-Pacific and other international perspectives, regulations and guidelines.

Mercury Emissions from Coal-fired Power Plant :b an Evaluation of Reduction Strategies Using the Analytic Hierarchy Process

Mercury Emissions from Coal-fired Power Plant :b an Evaluation of Reduction Strategies Using the Analytic Hierarchy Process PDF Author: Julie C. Metty
Publisher:
ISBN:
Category : Coal-fired power plants
Languages : en
Pages : 388

Get Book Here

Book Description