Author: D. E. Edmunds
Publisher: Springer
ISBN: 3030021254
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.
Elliptic Differential Operators and Spectral Analysis
Author: D. E. Edmunds
Publisher: Springer
ISBN: 3030021254
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.
Publisher: Springer
ISBN: 3030021254
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.
Partial Differential Equations VII
Author: M.A. Shubin
Publisher: Springer Science & Business Media
ISBN: 3662067196
Category : Mathematics
Languages : en
Pages : 278
Book Description
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum".
Publisher: Springer Science & Business Media
ISBN: 3662067196
Category : Mathematics
Languages : en
Pages : 278
Book Description
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum".
Spectral Theory and Differential Operators
Author: David Eric Edmunds
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
Spectral Theory and Differential Operators
Author: E. Brian Davies
Publisher: Cambridge University Press
ISBN: 9780521587105
Category : Mathematics
Languages : en
Pages : 198
Book Description
This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on partial differential operators.
Publisher: Cambridge University Press
ISBN: 9780521587105
Category : Mathematics
Languages : en
Pages : 198
Book Description
This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on partial differential operators.
Pseudodifferential Operators and Spectral Theory
Author: M.A. Shubin
Publisher: Springer Science & Business Media
ISBN: 3642565794
Category : Mathematics
Languages : en
Pages : 296
Book Description
I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.
Publisher: Springer Science & Business Media
ISBN: 3642565794
Category : Mathematics
Languages : en
Pages : 296
Book Description
I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.
Memorial Volume for Ludwig Faddeev
Author: Mo-Lin Ge
Publisher: World Scientific Publishing Company
ISBN: 9789813233768
Category : Science
Languages : en
Pages : 634
Book Description
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
Publisher: World Scientific Publishing Company
ISBN: 9789813233768
Category : Science
Languages : en
Pages : 634
Book Description
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
Degenerate Elliptic Equations
Author: Serge Levendorskii
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Spectral Analysis of Differential Operators
Author: Fedor S. Rofe-Beketov
Publisher: World Scientific
ISBN: 9812703454
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic SchrAdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other monographs. The only prerequisites needed to read it are basics of ordinary differential equations and operator theory. It should be accessible to graduate students, though its main topics are of interest to research mathematicians working in functional analysis, differential equations and mathematical physics, as well as to physicists interested in spectral theory of differential operators."
Publisher: World Scientific
ISBN: 9812703454
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic SchrAdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other monographs. The only prerequisites needed to read it are basics of ordinary differential equations and operator theory. It should be accessible to graduate students, though its main topics are of interest to research mathematicians working in functional analysis, differential equations and mathematical physics, as well as to physicists interested in spectral theory of differential operators."
Microlocal Analysis for Differential Operators
Author: Alain Grigis
Publisher: Cambridge University Press
ISBN: 9780521449861
Category : Mathematics
Languages : fr
Pages : 164
Book Description
This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.
Publisher: Cambridge University Press
ISBN: 9780521449861
Category : Mathematics
Languages : fr
Pages : 164
Book Description
This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.
Elliptic Boundary Problems for Dirac Operators
Author: Bernhelm Booß-Bavnbek
Publisher: Springer Science & Business Media
ISBN: 1461203376
Category : Mathematics
Languages : en
Pages : 322
Book Description
Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
Publisher: Springer Science & Business Media
ISBN: 1461203376
Category : Mathematics
Languages : en
Pages : 322
Book Description
Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.