Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
The Thirteen Books of Euclid's Elements
Author: Euclid
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Euclid's Elements of Geometry
Author: Euclid
Publisher:
ISBN:
Category :
Languages : en
Pages : 546
Book Description
EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
Publisher:
ISBN:
Category :
Languages : en
Pages : 546
Book Description
EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
Euclid—The Creation of Mathematics
Author: Benno Artmann
Publisher: Springer Science & Business Media
ISBN: 1461214122
Category : Mathematics
Languages : en
Pages : 352
Book Description
Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
Publisher: Springer Science & Business Media
ISBN: 1461214122
Category : Mathematics
Languages : en
Pages : 352
Book Description
Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
Principles of Geometry
Author: H. F. Baker
Publisher: Cambridge University Press
ISBN: 1108017770
Category : Mathematics
Languages : en
Pages : 204
Book Description
A benchmark study of projective geometry and the birational theory of surfaces, first published between 1922 and 1925.
Publisher: Cambridge University Press
ISBN: 1108017770
Category : Mathematics
Languages : en
Pages : 204
Book Description
A benchmark study of projective geometry and the birational theory of surfaces, first published between 1922 and 1925.
Geometry: Euclid and Beyond
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Euclid's Elements with Exercises Instructor's Copy
Author: Kathryn Goulding
Publisher:
ISBN: 9780692925959
Category :
Languages : en
Pages :
Book Description
The instructor's edition of Euclid's Elements With Exercises is intended as a guide for anyone teaching Euclid for the first time. Although it could be used by anyone, it was assembled and written with small schools or homeschooling groups in mind. In addition to containing the first six books in exactly the format of the student edition (also available on Amazon), the instructor's edition provides a concise overview of the course, including suggestions for conducting the class, a discussion of the organization of the material, brief comments on supplemental and memory work, and other details about which a new instructor might have questions. It also has notes for the teacher on each of the six books of the Elements, notes on selected exercises, and an appendix explaining the basics of formal reasoning, including an explanation of the converse and contrapositive of a statement and the concept of an indirect proof, which occurs early in Book I. The primary difference between this work and Euclid's Elements as it is usually presented (aside from the fact that there are some exercises), is that, while all of Books I - VI are included in the book, some propositions are omitted in the main body of the text (all omitted propositions are in Appendix A). This was done in order to be able to finish in two semesters all the plane geometry that would normally be covered in a modern geometry class. It should be noted, of course, that the flow of logic of the propositions is never interrupted. This book was not designed for the purist. Although it is pure Euclid and contains all of the first six books, it may offend the sensibilities of some who love Euclid (as the assembler/author does) to fail to place Book II in the expected flow of the main body of the text. For anyone not under a time constraint, or anyone moving quickly through the text, the author strongly recommends the inclusion of Book II in the course flow.
Publisher:
ISBN: 9780692925959
Category :
Languages : en
Pages :
Book Description
The instructor's edition of Euclid's Elements With Exercises is intended as a guide for anyone teaching Euclid for the first time. Although it could be used by anyone, it was assembled and written with small schools or homeschooling groups in mind. In addition to containing the first six books in exactly the format of the student edition (also available on Amazon), the instructor's edition provides a concise overview of the course, including suggestions for conducting the class, a discussion of the organization of the material, brief comments on supplemental and memory work, and other details about which a new instructor might have questions. It also has notes for the teacher on each of the six books of the Elements, notes on selected exercises, and an appendix explaining the basics of formal reasoning, including an explanation of the converse and contrapositive of a statement and the concept of an indirect proof, which occurs early in Book I. The primary difference between this work and Euclid's Elements as it is usually presented (aside from the fact that there are some exercises), is that, while all of Books I - VI are included in the book, some propositions are omitted in the main body of the text (all omitted propositions are in Appendix A). This was done in order to be able to finish in two semesters all the plane geometry that would normally be covered in a modern geometry class. It should be noted, of course, that the flow of logic of the propositions is never interrupted. This book was not designed for the purist. Although it is pure Euclid and contains all of the first six books, it may offend the sensibilities of some who love Euclid (as the assembler/author does) to fail to place Book II in the expected flow of the main body of the text. For anyone not under a time constraint, or anyone moving quickly through the text, the author strongly recommends the inclusion of Book II in the course flow.
Euclid in Greek
Author: Euclid
Publisher: CUP Archive
ISBN:
Category : Euclid's Elements
Languages : en
Pages : 264
Book Description
Publisher: CUP Archive
ISBN:
Category : Euclid's Elements
Languages : en
Pages : 264
Book Description
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
The Thirteen Books of Euclid's Elements
Author: Thomas L. Heath
Publisher: Cambridge University Press
ISBN: 1107480507
Category : History
Languages : en
Pages : 555
Book Description
First published in 1926, this book contains the final volume of a three-volume English translation of the thirteen books of Euclid's Elements.
Publisher: Cambridge University Press
ISBN: 1107480507
Category : History
Languages : en
Pages : 555
Book Description
First published in 1926, this book contains the final volume of a three-volume English translation of the thirteen books of Euclid's Elements.