Author: D M Gabbay
Publisher:
ISBN: 9781848902251
Category : Mathematics
Languages : en
Pages : 364
Book Description
Elementary Logic with Applications is written for undergraduate logic and logic programming courses. Logic has been applied to a wide variety of subjects such as software engineering and hardware design, to programming and artificial intelligence. In this way, it has served to stimulate the search for clear conceptual foundations. Recently many extensions of classical logic such as temporal, modal, relevance, fuzzy and non-monotonic logics have been widely used in computer science, therefore requiring a new formulation of classic logic which can be modified to yield the effect of non-classical logics. This text aims to introduce classical logic in such a way that one can easily deviate into discussing non-classical logics. It defines a number of different types of logics and the differences between them, starting with the basic notions of the most common logic. Elementary Logic with Applications develops a theorem prover for classical logic in a way that maintains a procedural point of view and presents the reader with the real challenges facing applied logic. Dov Gabbay and Odinaldo Rodrigues have been teaching logic and computer science for many years. Dov Gabbay has written numerous other titles on the subject of logic and is a world authority on non-classical logics. Odinaldo Rodrigues is widely known for his work on logic, belief revision and argumentation. The "Elementary Logic with Applications" course is currently taught at the Department of Informatics, King's College London.
Elementary Logic with Applications
Introduction to Elementary Mathematical Logic
Author: Abram Aronovich Stolyar
Publisher: Courier Corporation
ISBN: 0486645614
Category : Mathematics
Languages : en
Pages : 229
Book Description
This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
Publisher: Courier Corporation
ISBN: 0486645614
Category : Mathematics
Languages : en
Pages : 229
Book Description
This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
Logic in Elementary Mathematics
Author: Robert M. Exner
Publisher: Courier Corporation
ISBN: 0486482219
Category : Mathematics
Languages : en
Pages : 290
Book Description
"This accessible, applications-related introductory treatment explores some of the structure of modern symbolic logic useful in the exposition of elementary mathematics. Topics include axiomatic structure and the relation of theory to interpretation. No prior training in logic is necessary, and numerous examples and exercises aid in the mastery of the language of logic. 1959 edition"--
Publisher: Courier Corporation
ISBN: 0486482219
Category : Mathematics
Languages : en
Pages : 290
Book Description
"This accessible, applications-related introductory treatment explores some of the structure of modern symbolic logic useful in the exposition of elementary mathematics. Topics include axiomatic structure and the relation of theory to interpretation. No prior training in logic is necessary, and numerous examples and exercises aid in the mastery of the language of logic. 1959 edition"--
Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Elementary Logic
Author: Brian Garrett
Publisher: Routledge
ISBN: 1317547497
Category : Philosophy
Languages : en
Pages : 190
Book Description
Elementary Logic explains what logic is, how it is done, and why it can be exciting. The book covers the central part of logic that all students have to learn: propositional logic. It aims to provide a crystal-clear introduction to what is often regarded as the most technically difficult area in philosophy. The book opens with an explanation of what logic is and how it is constructed. Subsequent chapters take the reader step-by-step through all aspects of elementary logic. Throughout, ideas are explained simply and directly, with the chapters packed with overviews, illustrative examples, and summaries. Each chapter builds on previous explanation and example, with the final chapters presenting more advanced methods. After a discussion of meta-logic and logical systems, the book closes with an exploration of how paradoxes can exist in the world of logic. Elementary Logic's clarity and engagement make it ideal for any reader studying logic for the first time.
Publisher: Routledge
ISBN: 1317547497
Category : Philosophy
Languages : en
Pages : 190
Book Description
Elementary Logic explains what logic is, how it is done, and why it can be exciting. The book covers the central part of logic that all students have to learn: propositional logic. It aims to provide a crystal-clear introduction to what is often regarded as the most technically difficult area in philosophy. The book opens with an explanation of what logic is and how it is constructed. Subsequent chapters take the reader step-by-step through all aspects of elementary logic. Throughout, ideas are explained simply and directly, with the chapters packed with overviews, illustrative examples, and summaries. Each chapter builds on previous explanation and example, with the final chapters presenting more advanced methods. After a discussion of meta-logic and logical systems, the book closes with an exploration of how paradoxes can exist in the world of logic. Elementary Logic's clarity and engagement make it ideal for any reader studying logic for the first time.
Two Applications of Logic to Mathematics
Author: Gaisi Takeuti
Publisher: Princeton University Press
ISBN: 1400871344
Category : Mathematics
Languages : en
Pages : 148
Book Description
Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that any arithmetical theorem proved in analytic number theory is a theorem in Peano's arithmetic. In doing so, the author applies Gentzen's cut elimination theorem. Although the results of Part One may be regarded as straightforward consequences of the spectral theorem in function analysis, the use of Boolean- valued models makes explicit and precise analogies used by analysts to lift results from ordinary analysis to operators on a Hilbert space. Essentially expository in nature, Part Two yields a general method for showing that analytic proofs of theorems in number theory can be replaced by elementary proofs. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400871344
Category : Mathematics
Languages : en
Pages : 148
Book Description
Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that any arithmetical theorem proved in analytic number theory is a theorem in Peano's arithmetic. In doing so, the author applies Gentzen's cut elimination theorem. Although the results of Part One may be regarded as straightforward consequences of the spectral theorem in function analysis, the use of Boolean- valued models makes explicit and precise analogies used by analysts to lift results from ordinary analysis to operators on a Hilbert space. Essentially expository in nature, Part Two yields a general method for showing that analytic proofs of theorems in number theory can be replaced by elementary proofs. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Mathematical Logic for Computer Science
Author: Mordechai Ben-Ari
Publisher: Springer Science & Business Media
ISBN: 1447103351
Category : Computers
Languages : en
Pages : 311
Book Description
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
Publisher: Springer Science & Business Media
ISBN: 1447103351
Category : Computers
Languages : en
Pages : 311
Book Description
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
Logic and Structure
Author: Dirk van Dalen
Publisher: Springer Science & Business Media
ISBN: 3662023822
Category : Mathematics
Languages : en
Pages : 218
Book Description
New corrected printing of a well-established text on logic at the introductory level.
Publisher: Springer Science & Business Media
ISBN: 3662023822
Category : Mathematics
Languages : en
Pages : 218
Book Description
New corrected printing of a well-established text on logic at the introductory level.
Mathematical Logic
Author: Stephen Cole Kleene
Publisher: Courier Corporation
ISBN: 0486317072
Category : Mathematics
Languages : en
Pages : 436
Book Description
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Publisher: Courier Corporation
ISBN: 0486317072
Category : Mathematics
Languages : en
Pages : 436
Book Description
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Logic for Computer Scientists
Author: Uwe Schöning
Publisher: Springer Science & Business Media
ISBN: 0817647635
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
Publisher: Springer Science & Business Media
ISBN: 0817647635
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.