Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation

Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation PDF Author: Weijiu Liu
Publisher: Springer Science & Business Media
ISBN: 3642046134
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Unlike abstract approaches to advanced control theory, this volume presents key concepts through concrete examples. Once the basic fundamentals are established, readers can apply them to solve other control problems of partial differential equations.

Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation

Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation PDF Author: Weijiu Liu
Publisher: Springer Science & Business Media
ISBN: 3642046134
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Unlike abstract approaches to advanced control theory, this volume presents key concepts through concrete examples. Once the basic fundamentals are established, readers can apply them to solve other control problems of partial differential equations.

Nonlinear Analysis and Optimization

Nonlinear Analysis and Optimization PDF Author: Boris S. Mordukhovich
Publisher: American Mathematical Soc.
ISBN: 1470417367
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
This volume contains the proceedings of the IMU/AMS Special Session on Nonlinear Analysis and Optimization, held from June 16-19, 2014, at the Second Joint International Meeting of the Israel Mathematical Union (IMU) and the American Mathematical Society (AMS), Bar-Ilan and Tel-Aviv Universities, Israel, and the Workshop on Nonlinear Analysis and Optimization, held on June 12, 2014, at the Technion-Israel Institute of Technology. The papers in this volume cover many different topics in Nonlinear Analysis and Optimization, including: Taylor domination property for analytic functions in the complex disk, mappings with upper integral bounds for p -moduli, multiple Fourier transforms and trigonometric series in line with Hardy's variation, finite-parameter feedback control for stabilizing damped nonlinear wave equations, implicit Euler approximation and optimization of one-sided Lipschitz differential inclusions, Bolza variational problems with extended-valued integrands on large intervals, first order singular variational problem with nonconvex cost, gradient and extragradient methods for the elasticity imaging inverse problem, discrete approximations of the entropy functional for probability measures on the plane, optimal irrigation scheduling for wheat production, existence of a fixed point of nonexpansive mappings in uniformly convex Banach spaces, strong convergence properties of m-accretive bounded operators, the Reich-Simons convex analytic inequality, nonlinear input-output equilibrium, differential linear-quadratic Nash games with mixed state-control constraints, and excessive revenue models of competitive markets.

Introduction to Modeling Biological Cellular Control Systems

Introduction to Modeling Biological Cellular Control Systems PDF Author: Weijiu Liu
Publisher: Springer Science & Business Media
ISBN: 8847024900
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
This textbook contains the essential knowledge in modeling, simulation, analysis, and applications in dealing with biological cellular control systems. In particular, the book shows how to use the law of mass balance and the law of mass action to derive an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin and Huxley's models to model an ionic channel or pump, and how to use the law of mass balance to integrate these enzyme or channel models into a complete feedback control system. The book also illustrates how to use data to estimate parameters in a model, how to use MATLAB to solve a model numerically, how to do computer simulations, and how to provide model predictions. Furthermore, the book demonstrates how to conduct a stability and sensitivity analysis on a model.

Boundary Control of PDEs

Boundary Control of PDEs PDF Author: Miroslav Krstic
Publisher: SIAM
ISBN: 0898718600
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.

Reaction-diffusion Waves

Reaction-diffusion Waves PDF Author: Arnaud Ducrot
Publisher: Editions Publibook
ISBN: 2748346319
Category : Differential operators
Languages : en
Pages : 119

Get Book Here

Book Description


Numerical Models for Differential Problems

Numerical Models for Differential Problems PDF Author: Alfio Quarteroni
Publisher: Springer Science & Business
ISBN: 8847055229
Category : Mathematics
Languages : en
Pages : 668

Get Book Here

Book Description
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.

The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations PDF Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Control and Nonlinearity

Control and Nonlinearity PDF Author: Jean-Michel Coron
Publisher: American Mathematical Soc.
ISBN: 0821849182
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.

Exploring ODEs

Exploring ODEs PDF Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 1611975166
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration.?

Sturm-Liouville Theory and its Applications

Sturm-Liouville Theory and its Applications PDF Author: Mohammed Al-Gwaiz
Publisher: Springer Science & Business Media
ISBN: 1846289718
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Developed from a course taught to senior undergraduates, this book provides a unified introduction to Fourier analysis and special functions based on the Sturm-Liouville theory in L2. The text’s presentation follows a clear, rigorous mathematical style that is highly readable. The author first establishes the basic results of Sturm-Liouville theory and then provides examples and applications to illustrate the theory. The final two chapters, on Fourier and Laplace transformations, demonstrate the use of the Fourier series method for representing functions to integral representations.