Author: Ali Ahmadian
Publisher: Springer
ISBN: 9783030344504
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. Provides optimization techniques and their applications for energy systems; Discusses the economic and environmental perspectives of electric vehicles; Contains the most comprehensive information about electric vehicles in a single source.
Electric Vehicles in Energy Systems
Energy Systems for Electric and Hybrid Vehicles
Author: K.T. Chau
Publisher: IET
ISBN: 1785610082
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The book provides thorough coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. Energy sources includes electrochemical energy sources, electromechanical energy storage, hybrid energy sources, on-board solar energy harvesting, on-board thermoelectric energy recovery, and battery management. Battery charging technology ranges from the existing charging strategies to the latest wireless charging techniques for park-and-charge and move-and-charge. Vehicle-to-grid technology covers interdisciplinary topics which link electric vehicles, information technology and power systems for management of energy systems, power interfaces and service scheduling. Researchers and advanced students developing electric/hybrid vehicles and intelligent transport systems in industry and academia will find this book invaluable. As will researchers and advanced students working on automotive engineering and battery/power engineering.
Publisher: IET
ISBN: 1785610082
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The book provides thorough coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. Energy sources includes electrochemical energy sources, electromechanical energy storage, hybrid energy sources, on-board solar energy harvesting, on-board thermoelectric energy recovery, and battery management. Battery charging technology ranges from the existing charging strategies to the latest wireless charging techniques for park-and-charge and move-and-charge. Vehicle-to-grid technology covers interdisciplinary topics which link electric vehicles, information technology and power systems for management of energy systems, power interfaces and service scheduling. Researchers and advanced students developing electric/hybrid vehicles and intelligent transport systems in industry and academia will find this book invaluable. As will researchers and advanced students working on automotive engineering and battery/power engineering.
Electric Powertrain
Author: John G. Hayes
Publisher: John Wiley & Sons
ISBN: 1119063647
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students.
Publisher: John Wiley & Sons
ISBN: 1119063647
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students.
Electric Vehicles and the Future of Energy Efficient Transportation
Author: Subramaniam, Umashankar
Publisher: IGI Global
ISBN: 1799876284
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.
Publisher: IGI Global
ISBN: 1799876284
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.
Electric Vehicles in Energy Systems
Author: Ali Ahmadian
Publisher: Springer Nature
ISBN: 3030344487
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. Provides optimization techniques and their applications for energy systems; Discusses the economic and environmental perspectives of electric vehicles; Contains the most comprehensive information about electric vehicles in a single source.
Publisher: Springer Nature
ISBN: 3030344487
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. Provides optimization techniques and their applications for energy systems; Discusses the economic and environmental perspectives of electric vehicles; Contains the most comprehensive information about electric vehicles in a single source.
Electric Vehicles
Author: Nil Patel
Publisher: Springer Nature
ISBN: 9811592519
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
This book focuses on the latest emerging technologies in electric vehicles (EV), and their economic and environmental impact. The topics covered include different types of EV such as hybrid electrical vehicle (HEV), battery electrical vehicle (BEV), fuel cell electrical vehicle (FCEV), plug-in hybrid electrical vehicle (PHEV). Theoretical background and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers and practitioners interested in different problems and challenges associated with electric vehicles.
Publisher: Springer Nature
ISBN: 9811592519
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
This book focuses on the latest emerging technologies in electric vehicles (EV), and their economic and environmental impact. The topics covered include different types of EV such as hybrid electrical vehicle (HEV), battery electrical vehicle (BEV), fuel cell electrical vehicle (FCEV), plug-in hybrid electrical vehicle (PHEV). Theoretical background and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers and practitioners interested in different problems and challenges associated with electric vehicles.
The Role of the Electric Vehicle in the Energy Transition
Author: Angel Arcos-Vargas
Publisher: Springer Nature
ISBN: 3030506339
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
This book explores the part that electric vehicles can play in reducing carbon dioxide emissions. Further, it explains the impact of public support, technological advances, lower costs and better battery performance in making electric vehicles a viable alternative. The book begins by analyzing the international context of electric vehicles and how they are being developed in different countries, and by offering a forecast of the electricity demand they may create. It then discusses technological innovations in electric vehicle recharging systems. The book is concerned not only with the economic potential of electric vehicles, but also with environmental aspects; consequently, it examines the raw materials supply chain and performs a lifecycle assessment. The book concludes with a chapter on alternative energies in transport, which may also help to facilitate the energy transition. Given its scope, the book offers a valuable resource for researchers, graduate students, policymakers and industry professionals interested in the energy transition and transport.
Publisher: Springer Nature
ISBN: 3030506339
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
This book explores the part that electric vehicles can play in reducing carbon dioxide emissions. Further, it explains the impact of public support, technological advances, lower costs and better battery performance in making electric vehicles a viable alternative. The book begins by analyzing the international context of electric vehicles and how they are being developed in different countries, and by offering a forecast of the electricity demand they may create. It then discusses technological innovations in electric vehicle recharging systems. The book is concerned not only with the economic potential of electric vehicles, but also with environmental aspects; consequently, it examines the raw materials supply chain and performs a lifecycle assessment. The book concludes with a chapter on alternative energies in transport, which may also help to facilitate the energy transition. Given its scope, the book offers a valuable resource for researchers, graduate students, policymakers and industry professionals interested in the energy transition and transport.
Influences of Electric Vehicles on Power System and Key Technologies of Vehicle-to-Grid
Author: Canbing Li
Publisher: Springer
ISBN: 3662493640
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
This book analyzes the influence of electric vehicles on microclimate and the indirect influence on power load from a unique perspective. It discusses different aspects of Vehicle-to-grid (V2G) technology, including large and small-scale charging infrastructures, and describes the effect on electricity price, voltage, frequency and other key V2G technologies. It introduces various aspects of the influence of electric vehicles on the power grids and the control strategies for achieving economic, safe and steady grid operation using V2G technologies. This book is suitable for senior undergraduates and postgraduates majoring in electrical, transportation, or environmental engineering, as well as other related professionals.
Publisher: Springer
ISBN: 3662493640
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
This book analyzes the influence of electric vehicles on microclimate and the indirect influence on power load from a unique perspective. It discusses different aspects of Vehicle-to-grid (V2G) technology, including large and small-scale charging infrastructures, and describes the effect on electricity price, voltage, frequency and other key V2G technologies. It introduces various aspects of the influence of electric vehicles on the power grids and the control strategies for achieving economic, safe and steady grid operation using V2G technologies. This book is suitable for senior undergraduates and postgraduates majoring in electrical, transportation, or environmental engineering, as well as other related professionals.
Energy Storage Systems for Electric Vehicles
Author:
Publisher:
ISBN: 9783039369638
Category :
Languages : en
Pages : 550
Book Description
The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.
Publisher:
ISBN: 9783039369638
Category :
Languages : en
Pages : 550
Book Description
The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.
Vehicle-to-Grid
Author: Junwei Lu
Publisher: IET
ISBN: 1849198551
Category : Science
Languages : en
Pages : 271
Book Description
Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid
Publisher: IET
ISBN: 1849198551
Category : Science
Languages : en
Pages : 271
Book Description
Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid