Author: Peter M. Robinson
Publisher: Advanced Texts in Econometrics
ISBN: 9780199257300
Category : Business & Economics
Languages : en
Pages : 396
Book Description
Long memory time series are characterized by a strong dependence between distant events.
Time Series with Long Memory
Author: Peter M. Robinson
Publisher: Advanced Texts in Econometrics
ISBN: 9780199257300
Category : Business & Economics
Languages : en
Pages : 396
Book Description
Long memory time series are characterized by a strong dependence between distant events.
Publisher: Advanced Texts in Econometrics
ISBN: 9780199257300
Category : Business & Economics
Languages : en
Pages : 396
Book Description
Long memory time series are characterized by a strong dependence between distant events.
The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics
Author: Jeffrey Racine
Publisher: Oxford University Press
ISBN: 0199857946
Category : Business & Economics
Languages : en
Pages : 562
Book Description
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Publisher: Oxford University Press
ISBN: 0199857946
Category : Business & Economics
Languages : en
Pages : 562
Book Description
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Time Series Analysis and Applications to Geophysical Systems
Author: David Brillinger
Publisher: Springer Science & Business Media
ISBN: 1461229626
Category : Mathematics
Languages : en
Pages : 262
Book Description
Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II.
Publisher: Springer Science & Business Media
ISBN: 1461229626
Category : Mathematics
Languages : en
Pages : 262
Book Description
Part of a two volume set based on a recent IMA program of the same name. The goal of the program and these books is to develop a community of statistical and other scientists kept up-to-date on developments in this quickly evolving and interdisciplinary field. Consequently, these books present recent material by distinguished researchers. Topics discussed in Part I include nonlinear and non- Gaussian models and processes (higher order moments and spectra, nonlinear systems, applications in astronomy, geophysics, engineering, and simulation) and the interaction of time series analysis and statistics (information model identification, categorical valued time series, nonparametric and semiparametric methods). Self-similar processes and long-range dependence (time series with long memory, fractals, 1/f noise, stable noise) and time series research common to engineers and economists (modeling of multivariate and possibly non-stationary time series, state space and adaptive methods) are discussed in Part II.
Time Series Analysis and Applications to Geophysical Systems
Author: Enders Anthony Robinson
Publisher: Springer Science & Business Media
ISBN: 9780387223117
Category : Mathematics
Languages : en
Pages : 282
Book Description
Time series methods are essential tools in the analysis of many geophysical systems. This volume, which consists of papers presented by a select, international group of statistical and geophysical experts at a Workshop on Time Series Analysis and Applications to Geophysical Systems at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota from November 12-15, 2001 as part of the IMA's Thematic Year on Mathematics in the Geosciences, explores the application of recent advances in time series methodology to a host of important problems ranging from climate change to seismology. The works in the volume deal with theoretical and methodological issues as well as real geophysical applications, and are written with both statistical and geophysical audiences in mind. Important contributions to time series modeling, estimation, prediction, and deconvolution are presented. The results are applied to a wide range of geophysical applications including the investigation and prediction of climatic variations, the interpretation of seismic signals, the estimation of flooding risk, the description of permeability in Chinese oil fields, and the modeling of NOx decomposition from thermal power plants.
Publisher: Springer Science & Business Media
ISBN: 9780387223117
Category : Mathematics
Languages : en
Pages : 282
Book Description
Time series methods are essential tools in the analysis of many geophysical systems. This volume, which consists of papers presented by a select, international group of statistical and geophysical experts at a Workshop on Time Series Analysis and Applications to Geophysical Systems at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota from November 12-15, 2001 as part of the IMA's Thematic Year on Mathematics in the Geosciences, explores the application of recent advances in time series methodology to a host of important problems ranging from climate change to seismology. The works in the volume deal with theoretical and methodological issues as well as real geophysical applications, and are written with both statistical and geophysical audiences in mind. Important contributions to time series modeling, estimation, prediction, and deconvolution are presented. The results are applied to a wide range of geophysical applications including the investigation and prediction of climatic variations, the interpretation of seismic signals, the estimation of flooding risk, the description of permeability in Chinese oil fields, and the modeling of NOx decomposition from thermal power plants.
Forecasting, Structural Time Series Models and the Kalman Filter
Author: Andrew C. Harvey
Publisher: Cambridge University Press
ISBN: 1107717140
Category : Business & Economics
Languages : en
Pages : 578
Book Description
In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.
Publisher: Cambridge University Press
ISBN: 1107717140
Category : Business & Economics
Languages : en
Pages : 578
Book Description
In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.
Regression and Time Series Model Selection
Author: Allan D. R. McQuarrie
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479
Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479
Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
The Oxford Handbook of Bayesian Econometrics
Author: John Geweke
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Statistical Theory and Method Abstracts
Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 576
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 576
Book Description
Time Series
Author: Raquel Prado
Publisher: CRC Press
ISBN: 1498747043
Category : Mathematics
Languages : en
Pages : 473
Book Description
• Expanded on aspects of core model theory and methodology. • Multiple new examples and exercises. • Detailed development of dynamic factor models. • Updated discussion and connections with recent and current research frontiers.
Publisher: CRC Press
ISBN: 1498747043
Category : Mathematics
Languages : en
Pages : 473
Book Description
• Expanded on aspects of core model theory and methodology. • Multiple new examples and exercises. • Detailed development of dynamic factor models. • Updated discussion and connections with recent and current research frontiers.
Modelling Non-Stationary Economic Time Series
Author: S. Burke
Publisher: Springer
ISBN: 0230005780
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Co-integration, equilibrium and equilibrium correction are key concepts in modern applications of econometrics to real world problems. This book provides direction and guidance to the now vast literature facing students and graduate economists. Econometric theory is linked to practical issues such as how to identify equilibrium relationships, how to deal with structural breaks associated with regime changes and what to do when variables are of different orders of integration.
Publisher: Springer
ISBN: 0230005780
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Co-integration, equilibrium and equilibrium correction are key concepts in modern applications of econometrics to real world problems. This book provides direction and guidance to the now vast literature facing students and graduate economists. Econometric theory is linked to practical issues such as how to identify equilibrium relationships, how to deal with structural breaks associated with regime changes and what to do when variables are of different orders of integration.