Author: Jean-Daniel Boissonnat
Publisher: Springer Science & Business Media
ISBN: 3540332596
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Effective Computational Geometry for Curves and Surfaces
Author: Jean-Daniel Boissonnat
Publisher: Springer Science & Business Media
ISBN: 3540332596
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Publisher: Springer Science & Business Media
ISBN: 3540332596
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Computational Geometry
Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Shape Interrogation for Computer Aided Design and Manufacturing
Author: Nicholas M. Patrikalakis
Publisher: Springer Science & Business Media
ISBN: 9783540424543
Category : Computers
Languages : en
Pages : 428
Book Description
Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.
Publisher: Springer Science & Business Media
ISBN: 9783540424543
Category : Computers
Languages : en
Pages : 428
Book Description
Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.
Effective Computational Geometry for Curves and Surfaces
Author: Jean-Daniel Boissonnat
Publisher: Springer
ISBN: 9783540332589
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Publisher: Springer
ISBN: 9783540332589
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
Computational Topology
Author: Herbert Edelsbrunner
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241
Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241
Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
Curve and Surface Reconstruction
Author: Tamal K. Dey
Publisher: Cambridge University Press
ISBN: 1139460684
Category : Computers
Languages : en
Pages : 229
Book Description
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.
Publisher: Cambridge University Press
ISBN: 1139460684
Category : Computers
Languages : en
Pages : 229
Book Description
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.
Efficient Algorithms
Author: Susanne Albers
Publisher: Springer
ISBN: 364203456X
Category : Computers
Languages : en
Pages : 440
Book Description
This Festschrift volume, published in honor of Kurt Mehlhorn on the occasion of his 60th birthday, contains 28 papers that demonstrate how the field of algorithmics has developed and matured in the decades since Mehlhorn's first book on the subject in 1977.
Publisher: Springer
ISBN: 364203456X
Category : Computers
Languages : en
Pages : 440
Book Description
This Festschrift volume, published in honor of Kurt Mehlhorn on the occasion of his 60th birthday, contains 28 papers that demonstrate how the field of algorithmics has developed and matured in the decades since Mehlhorn's first book on the subject in 1977.
Nonlinear Computational Geometry
Author: Ioannis Z. Emiris
Publisher: Springer Science & Business Media
ISBN: 1441909990
Category : Mathematics
Languages : en
Pages : 244
Book Description
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Publisher: Springer Science & Business Media
ISBN: 1441909990
Category : Mathematics
Languages : en
Pages : 244
Book Description
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms
Author: Abel Gomes
Publisher: Springer Science & Business Media
ISBN: 1848824068
Category : Computers
Languages : en
Pages : 351
Book Description
Implicit objects have gained increasing importance in geometric modeling, visualisation, animation, and computer graphics, because their geometric properties provide a good alternative to traditional parametric objects. This book presents the mathematics, computational methods and data structures, as well as the algorithms needed to render implicit curves and surfaces, and shows how implicit objects can easily describe smooth, intricate, and articulatable shapes, and hence why they are being increasingly used in graphical applications. Divided into two parts, the first introduces the mathematics of implicit curves and surfaces, as well as the data structures suited to store their sampled or discrete approximations, and the second deals with different computational methods for sampling implicit curves and surfaces, with particular reference to how these are applied to functions in 2D and 3D spaces.
Publisher: Springer Science & Business Media
ISBN: 1848824068
Category : Computers
Languages : en
Pages : 351
Book Description
Implicit objects have gained increasing importance in geometric modeling, visualisation, animation, and computer graphics, because their geometric properties provide a good alternative to traditional parametric objects. This book presents the mathematics, computational methods and data structures, as well as the algorithms needed to render implicit curves and surfaces, and shows how implicit objects can easily describe smooth, intricate, and articulatable shapes, and hence why they are being increasingly used in graphical applications. Divided into two parts, the first introduces the mathematics of implicit curves and surfaces, as well as the data structures suited to store their sampled or discrete approximations, and the second deals with different computational methods for sampling implicit curves and surfaces, with particular reference to how these are applied to functions in 2D and 3D spaces.
Modeling of Curves and Surfaces with MATLAB®
Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 0387712771
Category : Mathematics
Languages : en
Pages : 463
Book Description
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
Publisher: Springer Science & Business Media
ISBN: 0387712771
Category : Mathematics
Languages : en
Pages : 463
Book Description
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.