Earthquake Motion Simulation and Reliability Implications

Earthquake Motion Simulation and Reliability Implications PDF Author: Chiun-Lin Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 386

Get Book Here

Book Description

Earthquake Motion Simulation and Reliability Implications

Earthquake Motion Simulation and Reliability Implications PDF Author: Chiun-Lin Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 386

Get Book Here

Book Description


Earthquake Ground Motion Simulation and Reliability Implications

Earthquake Ground Motion Simulation and Reliability Implications PDF Author: Chiun-Lin Wu
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 184

Get Book Here

Book Description
For the purpose of performance evaluation of structures, a phenomenological model is developed for the generation of earthquake ground motions. The simulation procedure is based on the most recent ground motion models and simulation methods. A strong emphasis is placed on uncertaintly modeling and efficiency in application to performance evaluation and reliability analysis. Site locations of special interest include Memphis, TN, Carbondale, IL, St. Louis, MO, and Santa Barbara, CA as they represent U.S. cities in different areas of seismicity.

Earthquake Engineering

Earthquake Engineering PDF Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958

Get Book Here

Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res

Measuring, Modeling and Predicting the Seismic Site Effect

Measuring, Modeling and Predicting the Seismic Site Effect PDF Author: Yefei Ren
Publisher: Frontiers Media SA
ISBN: 2832540090
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
As recognized universally by both seismology and earthquake engineering communities, the amplitude and frequency content of ground motions are influenced by local site effects, including the effects of near-surface geologic materials, surface topographic and basin effects, and so on. Strong linkage between seismic site effect and earthquake damage has been commonly demonstrated from many past earthquakes. Therefore, quantitative and reliable evaluation of the seismic site effect is one of the crucial aspects in seismic hazard assessment and risk mitigation. With the significant advancement of modern seismic monitoring networks and arrays, huge amounts of high-quality seismic records are now being accumulated. This encourages us to measure the site responses and its associated uncertainty for selected seismic stations by some record-dependent approaches, such as horizontal-to-vertical spectral ratio (HVSR) measurements, generalized spectral inversion (GIT) methods, etc. Machine learning techniques also show significant promise in characterization of the near-surface geologic properties and prediction of site response. These data-driven approaches help us to better understand the physics of spatial and temporal variabilities of ground motions. Due to more and more site-specific data being captured, invoking non-ergodic assumptions in seismic response analysis has recently been a topic of great interest in the community. For specific site response analysis, numerical simulations are carried out to model the dynamic process of seismic waves propagating and scattering in the subsurface strata. With development of modeling capacity, great efforts have been taken to evaluate quantitatively the complex 2D and 3D effects on seismic site response.

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures PDF Author: George Deodatis
Publisher: CRC Press
ISBN: 1315884887
Category : Technology & Engineering
Languages : en
Pages : 1112

Get Book Here

Book Description
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str

Structural Safety and Reliability

Structural Safety and Reliability PDF Author: Naruhito Shiraishi
Publisher: Taylor & Francis US
ISBN: 9789054109815
Category : Science
Languages : en
Pages : 636

Get Book Here

Book Description


Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I

Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I PDF Author: Mitsuhiro Matsu'ura
Publisher: Birkhäuser
ISBN: 3034882033
Category : Science
Languages : en
Pages : 389

Get Book Here

Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.

Proceedings of the 7th International Conference on Earthquake Engineering and Seismology

Proceedings of the 7th International Conference on Earthquake Engineering and Seismology PDF Author: Murat Altug Erberik
Publisher: Springer Nature
ISBN: 3031573579
Category :
Languages : en
Pages : 590

Get Book Here

Book Description


Improved Seismic Monitoring - Improved Decision-Making

Improved Seismic Monitoring - Improved Decision-Making PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.

Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings

Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings PDF Author: Nenad Bijelić
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Databases of recorded motion are limited despite the increasing amount of data collected through strong motion instrumentation programs. Particular lack of data exists for large magnitude events and at close distances as well as on earthquakes in deep sedimentary basins. Additionally, databases of recorded motions are also limited in representation of energy at long periods due to the useable frequencies of recording instruments. This lack of data is currently partially addressed through assumption of ergodicity in development of empirical ground motion prediction equations (GMPEs). Nevertheless, challenges remain for calibration of empirical GMPEs as used in conventional approaches for probabilistic estimation of seismic hazard. At the same time, limited data on strong earthquakes and their effect on structures poses challenges for making reliable risk assessments particularly for tall buildings. For instance, while the collapse safety of tall buildings is likely controlled by large magnitude earthquakes with long du- rations and high long-period content, there are few available recorded ground motions to evaluate these issues. The influence of geologic basins on amplifying ground motion effects raises additional questions. Absent recorded motions from past large magnitude earthquakes, physics-based ground motion simulations provide a viable alternative due to the ability to consider extreme ground motions while being inherently site-specific and explicitly considering instances not well constrained by limited empirical data. This thesis focuses on utilization of physics-based simulated earthquake ground motions for performance assessment of tall buildings with three main goals: (1) developing confidence in the use of simulated ground motions through comparative assessments of recorded and simulated motions; (2) identifying important characteristics of extreme ground motions for col- lapse safety of tall buildings; (3) exploring areas where simulated ground motions provide significant advantages over recorded motions for performance-based engineering. To gain confidence in the use of simulated motions for full performance assessment of tall buildings, a 'similar intensity measure' validation study was performed. Structural responses to ground motions simulated with different methods on the Southern California Earthquake Center (SCEC) Broadband Platform (BBP) are contrasted to recorded motions from PEER NGA database with similar spectral shape and significant durations. Two tall buildings, a 20-story concrete frame and a 42-story concrete core wall building, are analyzed at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Considered demands include story drift ratios, floor accelerations and collapse response. These comparisons yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. Moving beyond validation, the thesis also explored areas where the use of simulated motions provides advantages over approaches based on limited databases of recorded motions for performance-based engineering. One such area is seismic risk in deep sedimentary basins which is studied by examining collapse risk and drift demands of a 20-story archetype tall building utilizing ground motions at four sites in the Los Angeles basin. Seismic demands of the building are calculated form nonlinear structural analyses using large datasets (~500,000 ground motions per site) of unscaled, site-specific simulated seismograms. Seismic hazard and building performance from direct analysis of SCEC CyberShake motions are contrasted with values obtained based on 'conventional' approaches that rely on recorded motions coupled with probabilistic seismic hazard assessments. The analysis shows that, depending on the location of the site within the basin, the two approaches can yield drastically different results. For instance, at a deep basin site the CyberShake-based analysis yields around seven times larger mean annual frequency of collapse ( c) and significantly higher drift demands (e.g. drift demand of 1% is exceeded around three times more frequently) compared to the conventional approach. Both the hazard as well as the spectral shapes of the motions are shown to drive the differences in responses. Deaggregation of collapse risk is performed to identify the relative contributions of earthquake fault ruptures, linking building responses with specific seismograms and contrasting collapse risk with hazard. The effect of earthquake ground motions in deep sedimentary basins on structural collapse risk is further studied through the use of CyberShake earthquake simulations in the Los Angeles basin. Distinctive waveform characteristics of deep basin seismograms are used to classify the ground motions into several archetype groups, and the damaging influence of the basin effects are evaluated by comparing nonlinear structural responses under comparable basin and non-basin ground motions. The deep basin ground motions are observed to have larger durations and spectral intensities than non-basin motions for vibration periods longer than about 1.5 seconds, which can increase the relative structural collapse risk by up to 20 percent between ground motions with otherwise comparable spectral accelerations and significant durations. Two new metrics, termed sustained amplitude response spectra (RSx spectra) and significant duration spectra (Da spectra), are proposed to quantify period-dependent duration effects that are not otherwise captured by conventional ground motion intensity measures. The proposed sustained amplitude response spectra and significant duration spectra show promise for characterizing the damaging effects of long duration features of basin ground motions on buildings and other structures. The large database of CyberShake simulations is utilized to re-examine the relationships between engineering demand parameters and input ground motions on structural response. Focusing on collapse response, machine learning techniques are applied to results of about two million nonlinear time history analyses of an archetype 20-story tall building performed using CyberShake ground motions. The resulting feature selection (based on regularized logistic regression) generally confirms existing understanding of collapse predictors as gained from scaled recorded motions but also reveals the benefit of some novel intensity measures (IMs), in particular the RSx spectral features. In addition, the statistical interrogations of the large collection of hazard-consistent simulations demonstrate the utility of different IMs for collapse predictions in a way that is not possible with recorded motions. A small subset of robust IMs is identified and used in development of an efficient collapse classification algorithm, which is tested on benchmark results from other CyberShake sites. The classification algorithm yields promising results for application to regional risk assessment of building performance.