Dynamics of Topologically Generic Homeomorphisms

Dynamics of Topologically Generic Homeomorphisms PDF Author: Ethan Akin
Publisher: American Mathematical Soc.
ISBN: 0821833383
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.

Dynamics of Topologically Generic Homeomorphisms

Dynamics of Topologically Generic Homeomorphisms PDF Author: Ethan Akin
Publisher: American Mathematical Soc.
ISBN: 0821833383
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.

The Maximal Subgroups of Positive Dimension in Exceptional Algebraic Groups

The Maximal Subgroups of Positive Dimension in Exceptional Algebraic Groups PDF Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821834827
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Intends to complete the determination of the maximal subgroups of positive dimension in simple algebraic groups of exceptional type over algebraically closed fields. This title follows work of Dynkin, who solved the problem in characteristic zero, and Seitz who did likewise over fields whose characteristic is not too small.

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds; A Finiteness Result

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds; A Finiteness Result PDF Author: Valentin Poenaru
Publisher: American Mathematical Soc.
ISBN: 0821834606
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
Shows that at the cost of replacing $V DEGREES3$ by $V_h DEGREES3 = \{V DEGREES3$ with very many holes $\}$, we can always find representations $X DEGREES2 \stackrel {f} {\rightarrow} V DEGREES3$ with $X DEGREES2$ locally finite and almost-arborescent, with $\Psi (f)=\Phi (f)$, and with the ope

An Algebraic Structure for Moufang Quadrangles

An Algebraic Structure for Moufang Quadrangles PDF Author: Tom de Medts
Publisher: American Mathematical Soc.
ISBN: 0821836080
Category : Mathematics
Languages : en
Pages : 114

Get Book Here

Book Description
Features an article that intends to present a uniform algebraic structure for Moufang quadrangles, and to classify these structures without referring back to the original Moufang quadrangles from which they arise, thereby also giving a new proof for the classification of Moufang quadrangles, which does consist of the division into these 2 parts.

Representation Theory and Numerical AF-Invariants

Representation Theory and Numerical AF-Invariants PDF Author: Ola Bratteli
Publisher: American Mathematical Soc.
ISBN: 0821834916
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Part A. Representation theory Part B. Numerical AF-invariants Bibliography List of figures List of tables List of terms and symbols.

Shock-Wave Solutions of the Einstein Equations with Perfect Fluid Sources: Existence and Consistency by a Locally Inertial Glimm Scheme

Shock-Wave Solutions of the Einstein Equations with Perfect Fluid Sources: Existence and Consistency by a Locally Inertial Glimm Scheme PDF Author: Jeff Groah
Publisher: American Mathematical Soc.
ISBN: 082183553X
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
Demonstrates the consistency of the Einstein equations at the level of shock-waves by proving the existence of shock wave solutions of the spherically symmetric Einstein equations for a perfect fluid, starting from initial density and velocity profiles that are only locally of bounded total variation.

Exponentially Small Splitting of Invariant Manifolds of Parabolic Points

Exponentially Small Splitting of Invariant Manifolds of Parabolic Points PDF Author:
Publisher: American Mathematical Soc.
ISBN: 0821834452
Category :
Languages : en
Pages : 102

Get Book Here

Book Description


Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces

Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces PDF Author: Nicole Bopp
Publisher: American Mathematical Soc.
ISBN: 0821836234
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
Intends to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces.

Locally Finite Root Systems

Locally Finite Root Systems PDF Author: Ottmar Loos
Publisher: American Mathematical Soc.
ISBN: 0821835467
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
We develop the basic theory of root systems $R$ in a real vector space $X$ which are defined in analogy to the usual finite root systems, except that finiteness is replaced by local finiteness: the intersection of $R$ with every finite-dimensional subspace of $X$ is finite. The main topics are Weyl groups, parabolic subsets and positive systems, weights, and gradings.

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness PDF Author: Lee Klingler
Publisher: American Mathematical Soc.
ISBN: 0821837389
Category : Mathematics
Languages : en
Pages : 187

Get Book Here

Book Description
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)