Dynamics and Bifurcations of Non-Smooth Mechanical Systems

Dynamics and Bifurcations of Non-Smooth Mechanical Systems PDF Author: Remco I. Leine
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.

Dynamics and Bifurcations of Non-Smooth Mechanical Systems

Dynamics and Bifurcations of Non-Smooth Mechanical Systems PDF Author: Remco I. Leine
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.

Bifurcation and Chaos in Nonsmooth Mechanical Systems

Bifurcation and Chaos in Nonsmooth Mechanical Systems PDF Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 9812384596
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.

Non-smooth Problems in Vehicle Systems Dynamics

Non-smooth Problems in Vehicle Systems Dynamics PDF Author: Per Grove Thomsen
Publisher: Springer Science & Business Media
ISBN: 3642013562
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
The book combines vehicle systems dynamics with the latest theoretical developments in dynamics of non-smooth systems and numerical analysis of differential-algebraic dynamical systems with discontinuities. These two fields are fundamental for the modelling and analysis of vehicle dynamical sytems. The results are also applicable to other non-smooth dynamical systems.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Bifurcation And Chaos In Nonsmooth Mechanical Systems

Bifurcation And Chaos In Nonsmooth Mechanical Systems PDF Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 9814485403
Category : Mathematics
Languages : en
Pages : 564

Get Book Here

Book Description
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.

Piecewise-smooth Dynamical Systems

Piecewise-smooth Dynamical Systems PDF Author: Mario Bernardo
Publisher: Springer Science & Business Media
ISBN: 1846287081
Category : Mathematics
Languages : en
Pages : 497

Get Book Here

Book Description
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.

Dynamics and Control of Hybrid Mechanical Systems

Dynamics and Control of Hybrid Mechanical Systems PDF Author: Gennadiĭ Alekseevich Leonov
Publisher: World Scientific
ISBN: 9814282324
Category : Technology
Languages : en
Pages : 261

Get Book Here

Book Description
The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents. The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems

Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems PDF Author: Michal Feckan
Publisher: Academic Press
ISBN: 0128043644
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity. - Extends Melnikov analysis of the classic Poincaré and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity - Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems - Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincaré-Andronov-Melnikov analysis can be used to solve them - Investigates the relationship between non-smooth systems and their continuous approximations

Numerical Methods for Nonsmooth Dynamical Systems

Numerical Methods for Nonsmooth Dynamical Systems PDF Author: Vincent Acary
Publisher: Springer Science & Business Media
ISBN: 3540753923
Category : Technology & Engineering
Languages : en
Pages : 529

Get Book Here

Book Description
This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.

Nonsmooth Mechanics

Nonsmooth Mechanics PDF Author: Bernard Brogliato
Publisher: Springer
ISBN: 3319286641
Category : Technology & Engineering
Languages : en
Pages : 657

Get Book Here

Book Description
Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to issues connected with control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given detailed exposition connected by a mathematical framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements as well as with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in: the existence and uniqueness of solutions; impact models; extension of the Lagrange–Dirichlet theorem and trajectory tracking; and well-posedness of contact complementarity problems with and without friction. Many figures (both new and redrawn to improve the clarity of the presentation) and examples are used to illustrate the theoretical developments. Material introducing the mathematics of nonsmooth mechanics has been improved to reflect the broad range of applications interest that has developed since publication of the second edition. The detail of some mathematical essentials is provided in four appendices. With its improved bibliography of over 1,300 references and wide-ranging coverage, Nonsmooth Mechanics (third edition) is sure to be an invaluable resource for researchers and postgraduates studying the control of mechanical systems, robotics, granular matter and relevant fields of applied mathematics. “The book’s two best features, in my view are its detailed survey of the literature... and its detailed presentation of many examples illustrating both the techniques and their limitations... For readers interested in the field, this book will serve as an excellent introductory survey.” Andrew Lewis in Automatica “It is written with clarity, contains the latest research results in the area of impact problems for rigid bodies and is recommended for both applied mathematicians and engineers.” Panagiotis D. Panagiotopoulos in Mathematical Reviews “The presentation is excellent in combining rigorous mathematics with a great number of examples... allowing the reader to understand the basic concepts.” Hans Troger in Mathematical Abstracts “/i>