Author: Zhilin Jin
Publisher: Springer Nature
ISBN: 3031015002
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.
Dynamic Stability and Control of Tripped and Untripped Vehicle Rollover
Dynamic Stability and Control of Tripped and Untripped Vehicle Rollover
Author: Zhilin Jin
Publisher:
ISBN: 9781681735603
Category :
Languages : en
Pages : 120
Book Description
Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.
Publisher:
ISBN: 9781681735603
Category :
Languages : en
Pages : 120
Book Description
Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.
Decision Making, Planning, and Control Strategies for Intelligent Vehicles
Author: Haotian Cao
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128
Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
Deep Learning for Autonomous Vehicle Control
Author: Sampo Kuutti
Publisher: Springer Nature
ISBN: 3031015029
Category : Technology & Engineering
Languages : en
Pages : 70
Book Description
The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
Publisher: Springer Nature
ISBN: 3031015029
Category : Technology & Engineering
Languages : en
Pages : 70
Book Description
The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
Narrow Tilting Vehicles
Author: Chen Tang
Publisher: Springer Nature
ISBN: 3031015010
Category : Technology & Engineering
Languages : en
Pages : 75
Book Description
To resolve the urban transportation challenges like congestion, parking, fuel consumption, and pollution, narrow urban vehicles which are small in footprint and light in their gross weight are proposed. Apart from the narrow cabin design, these vehicles are featured by their active tilting system, which automatically tilts the cabin like a motorcycle during the cornering for comfort and safety improvements. Such vehicles have been manufactured and utilized in city commuter programs. However, there is no book that systematically discusses the mechanism, dynamics, and control of narrow tilting vehicles (NTVs). In this book, motivations for building NTVs and various tilting mechanisms designs are reviewed, followed by the study of their dynamics. Finally, control algorithms designed to fully utilize the potential of tilting mechanisms in narrow vehicles are discussed. Special attention is paid to an efficient use of the control energy for rollover mitigation, which greatly enhance the stability of NTVs with optimized operational costs.
Publisher: Springer Nature
ISBN: 3031015010
Category : Technology & Engineering
Languages : en
Pages : 75
Book Description
To resolve the urban transportation challenges like congestion, parking, fuel consumption, and pollution, narrow urban vehicles which are small in footprint and light in their gross weight are proposed. Apart from the narrow cabin design, these vehicles are featured by their active tilting system, which automatically tilts the cabin like a motorcycle during the cornering for comfort and safety improvements. Such vehicles have been manufactured and utilized in city commuter programs. However, there is no book that systematically discusses the mechanism, dynamics, and control of narrow tilting vehicles (NTVs). In this book, motivations for building NTVs and various tilting mechanisms designs are reviewed, followed by the study of their dynamics. Finally, control algorithms designed to fully utilize the potential of tilting mechanisms in narrow vehicles are discussed. Special attention is paid to an efficient use of the control energy for rollover mitigation, which greatly enhance the stability of NTVs with optimized operational costs.
Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles
Author: Yeuching Li
Publisher: Morgan & Claypool Publishers
ISBN: 1636393020
Category : Computers
Languages : en
Pages : 135
Book Description
The urgent need for vehicle electrification and improvement in fuel efficiency has gained increasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-based strategies to optimization-based methods, that can provide diverse options to achieve higher fuel economy performance. However, the research scope for energy management is still expanding with the development of intelligent transportation systems and the improvement in onboard sensing and computing resources. Owing to the boom in machine learning, especially deep learning and deep reinforcement learning (DRL), research on learning-based energy management strategies (EMSs) is gradually gaining more momentum. They have shown great promise in not only being capable of dealing with big data, but also in generalizing previously learned rules to new scenarios without complex manually tunning. Focusing on learning-based energy management with DRL as the core, this book begins with an introduction to the background of DRL in HEV energy management. The strengths and limitations of typical DRL-based EMSs are identified according to the types of state space and action space in energy management. Accordingly, value-based, policy gradient-based, and hybrid action space-oriented energy management methods via DRL are discussed, respectively. Finally, a general online integration scheme for DRL-based EMS is described to bridge the gap between strategy learning in the simulator and strategy deployment on the vehicle controller.
Publisher: Morgan & Claypool Publishers
ISBN: 1636393020
Category : Computers
Languages : en
Pages : 135
Book Description
The urgent need for vehicle electrification and improvement in fuel efficiency has gained increasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-based strategies to optimization-based methods, that can provide diverse options to achieve higher fuel economy performance. However, the research scope for energy management is still expanding with the development of intelligent transportation systems and the improvement in onboard sensing and computing resources. Owing to the boom in machine learning, especially deep learning and deep reinforcement learning (DRL), research on learning-based energy management strategies (EMSs) is gradually gaining more momentum. They have shown great promise in not only being capable of dealing with big data, but also in generalizing previously learned rules to new scenarios without complex manually tunning. Focusing on learning-based energy management with DRL as the core, this book begins with an introduction to the background of DRL in HEV energy management. The strengths and limitations of typical DRL-based EMSs are identified according to the types of state space and action space in energy management. Accordingly, value-based, policy gradient-based, and hybrid action space-oriented energy management methods via DRL are discussed, respectively. Finally, a general online integration scheme for DRL-based EMS is described to bridge the gap between strategy learning in the simulator and strategy deployment on the vehicle controller.
Modeling for Hybrid and Electric Vehicles Using Simscape
Author: Shuvra Das
Publisher: Springer Nature
ISBN: 3031015088
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, almost all the automobile manufacturers have adopted strategies and launched vehicle models that are electric and/or hybrid. With this shift in technology, employers have growing needs for new talent in areas such as energy storage and battery technology, power electronics, electric motor drives, embedded control systems, and integration of multi-disciplinary systems. To support these needs, universities are adjusting their programs to train students in these new areas of expertise. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. Simscape, a Matlab/Simulink toolbox for modeling physical systems, is an ideally suited platform for developing and deploying models for systems and sub-systems that are critical for hybrid and electric vehicles. This text will focus on guiding the reader in the development of models for all critical areas of hybrid and electric vehicles. There are numerous texts on electric and hybrid vehicles in the market right now. A majority of these texts focus on the relevant technology and the physics and engineering of their operation. In contrast, this text focuses on the application of some of the theories in developing models of physical systems that are at the core of hybrid and electric vehicles. Simscape is the tool of choice for the development of these models. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results.
Publisher: Springer Nature
ISBN: 3031015088
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, almost all the automobile manufacturers have adopted strategies and launched vehicle models that are electric and/or hybrid. With this shift in technology, employers have growing needs for new talent in areas such as energy storage and battery technology, power electronics, electric motor drives, embedded control systems, and integration of multi-disciplinary systems. To support these needs, universities are adjusting their programs to train students in these new areas of expertise. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. Simscape, a Matlab/Simulink toolbox for modeling physical systems, is an ideally suited platform for developing and deploying models for systems and sub-systems that are critical for hybrid and electric vehicles. This text will focus on guiding the reader in the development of models for all critical areas of hybrid and electric vehicles. There are numerous texts on electric and hybrid vehicles in the market right now. A majority of these texts focus on the relevant technology and the physics and engineering of their operation. In contrast, this text focuses on the application of some of the theories in developing models of physical systems that are at the core of hybrid and electric vehicles. Simscape is the tool of choice for the development of these models. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results.
Path Planning and Tracking for Vehicle Collision Avoidance in Lateral and Longitudinal Motion Directions
Author: Jie Ji
Publisher: Springer Nature
ISBN: 303101507X
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
In recent years, the control of Connected and Automated Vehicles (CAVs) has attracted strong attention for various automotive applications. One of the important features demanded of CAVs is collision avoidance, whether it is a stationary or a moving obstacle. Due to complex traffic conditions and various vehicle dynamics, the collision avoidance system should ensure that the vehicle can avoid collision with other vehicles or obstacles in longitudinal and lateral directions simultaneously. The longitudinal collision avoidance controller can avoid or mitigate vehicle collision accidents effectively via Forward Collision Warning (FCW), Brake Assist System (BAS), and Autonomous Emergency Braking (AEB), which has been commercially applied in many new vehicles launched by automobile enterprises. But in lateral motion direction, it is necessary to determine a flexible collision avoidance path in real time in case of detecting any obstacle. Then, a path-tracking algorithm is designed to assure that the vehicle will follow the predetermined path precisely, while guaranteeing certain comfort and vehicle stability over a wide range of velocities. In recent years, the rapid development of sensor, control, and communication technology has brought both possibilities and challenges to the improvement of vehicle collision avoidance capability, so collision avoidance system still needs to be further studied based on the emerging technologies. In this book, we provide a comprehensive overview of the current collision avoidance strategies for traditional vehicles and CAVs. First, the book introduces some emergency path planning methods that can be applied in global route design and local path generation situations which are the most common scenarios in driving. A comparison is made in the path-planning problem in both timing and performance between the conventional algorithms and emergency methods. In addition, this book introduces and designs an up-to-date path-planning method based on artificial potential field methods for collision avoidance, and verifies the effectiveness of this method in complex road environment. Next, in order to accurately track the predetermined path for collision avoidance, traditional control methods, humanlike control strategies, and intelligent approaches are discussed to solve the path-tracking problem and ensure the vehicle successfully avoids the collisions. In addition, this book designs and applies robust control to solve the path-tracking problem and verify its tracking effect in different scenarios. Finally, this book introduces the basic principles and test methods of AEB system for collision avoidance of a single vehicle. Meanwhile, by taking advantage of data sharing between vehicles based on V2X (vehicle-to-vehicle or vehicle-to-infrastructure) communication, pile-up accidents in longitudinal direction are effectively avoided through cooperative motion control of multiple vehicles.
Publisher: Springer Nature
ISBN: 303101507X
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
In recent years, the control of Connected and Automated Vehicles (CAVs) has attracted strong attention for various automotive applications. One of the important features demanded of CAVs is collision avoidance, whether it is a stationary or a moving obstacle. Due to complex traffic conditions and various vehicle dynamics, the collision avoidance system should ensure that the vehicle can avoid collision with other vehicles or obstacles in longitudinal and lateral directions simultaneously. The longitudinal collision avoidance controller can avoid or mitigate vehicle collision accidents effectively via Forward Collision Warning (FCW), Brake Assist System (BAS), and Autonomous Emergency Braking (AEB), which has been commercially applied in many new vehicles launched by automobile enterprises. But in lateral motion direction, it is necessary to determine a flexible collision avoidance path in real time in case of detecting any obstacle. Then, a path-tracking algorithm is designed to assure that the vehicle will follow the predetermined path precisely, while guaranteeing certain comfort and vehicle stability over a wide range of velocities. In recent years, the rapid development of sensor, control, and communication technology has brought both possibilities and challenges to the improvement of vehicle collision avoidance capability, so collision avoidance system still needs to be further studied based on the emerging technologies. In this book, we provide a comprehensive overview of the current collision avoidance strategies for traditional vehicles and CAVs. First, the book introduces some emergency path planning methods that can be applied in global route design and local path generation situations which are the most common scenarios in driving. A comparison is made in the path-planning problem in both timing and performance between the conventional algorithms and emergency methods. In addition, this book introduces and designs an up-to-date path-planning method based on artificial potential field methods for collision avoidance, and verifies the effectiveness of this method in complex road environment. Next, in order to accurately track the predetermined path for collision avoidance, traditional control methods, humanlike control strategies, and intelligent approaches are discussed to solve the path-tracking problem and ensure the vehicle successfully avoids the collisions. In addition, this book designs and applies robust control to solve the path-tracking problem and verify its tracking effect in different scenarios. Finally, this book introduces the basic principles and test methods of AEB system for collision avoidance of a single vehicle. Meanwhile, by taking advantage of data sharing between vehicles based on V2X (vehicle-to-vehicle or vehicle-to-infrastructure) communication, pile-up accidents in longitudinal direction are effectively avoided through cooperative motion control of multiple vehicles.
Cyber-Physical Vehicle Systems
Author: Chen Lv
Publisher: Springer Nature
ISBN: 3031015045
Category : Technology & Engineering
Languages : en
Pages : 78
Book Description
This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.
Publisher: Springer Nature
ISBN: 3031015045
Category : Technology & Engineering
Languages : en
Pages : 78
Book Description
This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.
Autonomous Vehicles and the Law
Author: Ayse Buke Hiziroglu
Publisher: Springer Nature
ISBN: 3031015053
Category : Technology & Engineering
Languages : en
Pages : 52
Book Description
Disciplines can no longer be isolated. Technology has rapidly evolved to the point that driverless vehicles have truly become a reality and are not something out of a futuristic exhibition from the 1950s. However, engineers and researchers working on the development of autonomous vehicles cannot ignore the policy implications and policymakers as well as attorneys cannot ignore the technology. We are at a point where cross-disciplinary collaboration is vital in order to produce a technology that will immensely benefit society. This is the goal of this book: to educate autonomous vehicle developers on legal theory at the most basic level. Both policymakers and lawyers may also find the book helpful in gaining a basic understanding of the technology the developers are working on.
Publisher: Springer Nature
ISBN: 3031015053
Category : Technology & Engineering
Languages : en
Pages : 52
Book Description
Disciplines can no longer be isolated. Technology has rapidly evolved to the point that driverless vehicles have truly become a reality and are not something out of a futuristic exhibition from the 1950s. However, engineers and researchers working on the development of autonomous vehicles cannot ignore the policy implications and policymakers as well as attorneys cannot ignore the technology. We are at a point where cross-disciplinary collaboration is vital in order to produce a technology that will immensely benefit society. This is the goal of this book: to educate autonomous vehicle developers on legal theory at the most basic level. Both policymakers and lawyers may also find the book helpful in gaining a basic understanding of the technology the developers are working on.